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ABSTRACT7

In this study we propose a novel technique for computing cloud feedbacks using histograms8

of cloud fraction as joint functions of cloud top pressure (CTP ) and optical depth (τ).9

These histograms were generated by the International Satellite Cloud Climatology Project10

(ISCCP) simulator, which was incorporated into doubled CO2 equilibrium slab ocean model11

experiments as part of the first phase of the Cloud Feedback Model Intercomparison Project12

(CFMIP1). We use a radiative transfer model to compute top of atmosphere (TOA) flux13

sensitivities to cloud fraction perturbations in each bin of the ISCCP simulator histogram,14

which we refer to as a cloud radiative kernel. Multiplying the cloud radiative kernel histogram15

with the histogram of actual cloud top fraction changes per unit of global warming simulated16

by each model produces an estimate of cloud feedback. Unlike previous studies in which the17

types of cloud changes that contribute to cloud feedback are indirectly inferred, this technique18

allows more direct attribution of the feedback to the cloud types from which it arises.19

In five of the six models for which the comparison is possible, both the spatial structures20

and globally integrated values of cloud feedbacks computed in this manner agree remarkably21

well with those computed by adjusting the change in cloud radiative forcing for non-cloud22

related effects as in Soden et al. (2008). We show that the global mean model-simulated cloud23

feedback in the full ensemble of ten models is dominated by contributions from changes in24

medium thickness (3.6 ≤ τ < 23) cloud fractions, but that changes in the fractional coverage25

of thick (τ ≥ 23) clouds bring about the rapid transition from positive to negative cloud26

feedback poleward of about 50◦. High (CTP < 440 hPa) cloud changes are the dominant27

contributor to LW cloud feedback at every latitude, but because their impacts on LW and SW28

cloud feedback are in opposition, they contribute less to the net cloud feedback than do the29
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positive contributions from low (CTP ≥ 680 hPa) cloud fraction reductions. Surprisingly,30

middle (440 ≤ CTP < 680 hPa) level cloud reductions are responsible for positive SW cloud31

feedbacks that are nearly 70% of the size of those due to low clouds. Furthermore, more32

than half of the global mean net cloud feedback can be attributed to the combined response33

of middle- and high-level clouds. Finally, high cloud changes induce wider range of LW and34

SW cloud feedbacks across models than do low clouds, providing a caution against solely35

attributing large uncertainty in cloud feedback to low clouds.36

1. Introduction37

Clouds are fundamentally important to the energy budget of the planet owing to their38

high albedo, large emissivity, and location at colder temperatures than the surface. Relative39

to a hypothetical cloudless but otherwise identical planet, the global and annual mean effect40

of clouds at the top of atmosphere (TOA) is to increase the amount of reflected shortwave41

(SW) radiation by 48 W m−2 and to reduce the amount of emitted longwave (LW) radiation42

by 31 W m−2 (Harrison et al. (1990)). Thus the net effect of clouds, which is the sum of43

these large and opposing effects, is to cool the planet by 17 W m−2.44

An important question of climate science whose answer remains largely unconstrained45

is how cloud radiative effects will change as the planet warms due to long-lived greenhouse46

gases. A change in clouds that is systematically associated with an increase in global mean47

surface temperature represents a feedback in which the radiation imbalance at the TOA48

due to increased greenhouse gas concentrations is amplified or dampened. The current49

generation of global climate models (GCMs) all exhibit positive cloud feedbacks (Soden and50
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Held (2006)), indicating that modeled clouds change in such a way as to cool the planet51

less as the planet warms. However, the inter-model spread in cloud feedback is larger than52

for any other feedback process and is the primary contributor to the large range of climate53

sensitivity produced by the models (e.g., Cess (1990); Soden and Held (2006); Ringer et al.54

(2006)).55

Uncertainty in cloud feedback must be reduced if the range of possible future climates56

simulated by models is to be narrowed. To do so, it is necessary to identify the nature of57

cloud changes that give rise to cloud feedbacks within models, with an eye towards identi-58

fying those aspects that are robust from those that are not robust. Such an approach may59

begin to separate the physical processes that are well understood, better constrained, and/or60

consistently modelled from those that are not. This requires accurate methods to quantify61

cloud feedback that can be applied across models using the available diagnostics archived by62

the modeling centers.63

Three primary methods have been used previously to attribute cloud feedbacks to the64

cloud changes from which they arise. Bony et al. (2004), Bony and Dufresne (2005), and65

Wyant et al. (2006) used 500 hPa vertical motion as a proxy for the large-scale circulation to66

separate the response of tropical clouds to an imposed climate change into a thermodynamic67

component due to intrinsic temperature dependence of cloud radiative properties and a68

dynamic component due to changes in circulation. Webb et al. (2006) inferred the types69

of cloud changes that are consistent with the relative strengths of the changes in LW and70

SW cloud forcing at each gridpoint. Williams and Tselioudis (2007) and Williams and71

Webb (2009) employed a clustering technique to define several primary cloud regimes from72

ISCCP simulator output and assessed the contributions to cloud feedback from changes in73
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the relative frequency of occurrence of each regime and from changes in the cloud radiative74

forcing within each regime. All of these studies found a dominant role for low clouds (defined75

by Bony et al. (2004) as those in regimes of moderate subsidence, by Webb et al. (2006)76

as those for which the change in LW cloud forcing is small but the change in SW cloud77

forcing is large, and by Williams and Tselioudis (2007) and Williams and Webb (2009) as78

stratocumulus and stratocumulus-to-cumulus transition regimes) in driving the inter-model79

spread in net cloud feedback. However, two important ambiguities remain in all of these80

studies.81

First, Soden et al. (2004) have demonstrated that the change in cloud forcing, defined82

as the difference between clear- and all-sky TOA fluxes (e.g., Charlock and Ramanathan83

(1985)), may not be an accurate measure of the magnitude or even the sign of the cloud84

feedback because it includes non-cloud-induced changes in fluxes that are irrelevant for cloud85

feedback. This is especially true at high latitudes where large reductions in surface albedo86

may incorrectly imply large negative SW cloud feedback, but is also important in deep87

convective regions where the emission from clouds remains nearly fixed, falsely implying a88

near-zero LW cloud feedback when in reality it is moderately positive (Zelinka and Hartmann89

(2010)). (Soden et al. (2008) proposed a method to compute cloud feedbacks that accounts90

for and attempts to remove the effect of clear-sky changes on the change in cloud forcing,91

which is discussed below.)92

The second important ambiguity in these studies is that – even if clear-sky effects are93

accounted for – the use of such an integrated quantity as the change in radiation at the TOA94

does not allow for clear identification of the nature of cloud changes from which the radiative95

changes arise. For example, at a location in which the change in both SW and LW cloud96
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forcing is positive (i.e., one given the H classification of Webb et al. (2006)), the implied97

cloud response is “less/thinner low and more/higher/thicker high thin cloud.” Clearly a98

number of plausible cloud responses can give rise to a particular combination of LW and99

SW cloud forcing changes. Another arguably vague finding that is common to these studies100

is the small role of high clouds in contributing to both the mean and inter-model spread101

in cloud feedback. Is this because high clouds exhibit little change, and do so similarly102

across models, or because there are large but compensating changes in high clouds (e.g.,103

large upward shifts and large reductions in coverage) that occur consistently across models?104

Such integrated measures potentially mask competing effects of cloud changes, which may105

give a false indication of robustness or de-emphasize the importance of a particular type of106

cloud change. Therefore it is preferable to devise an alternative method in which the cloud107

changes that cause the cloud feedback can be determined directly.108

In this paper we propose a different technique for attributing the contributions of spe-109

cific types of cloud changes to cloud feedback that makes use of histograms of cloud fraction110

partitioned by cloud top pressure (CTP ) and visible optical depth (τ), along with corre-111

sponding histograms containing TOA radiative flux sensitivities to cloud fraction changes.112

The CTP -τ histograms of cloud fraction we use are generated by the ISCCP simulator113

(Klein and Jakob (1999); Webb et al. (2001)), which was run inline in GCMs as part of114

the experiments performed for the first phase of CFMIP (McAvaney and Le Treut (2003)).115

The simulator provides a plausible distribution of cloud top fractions more directly related116

to the cloud top information that passive satellite sensors observing the model atmosphere117

would retrieve. Because the cloud top fractions are individually “visible” from space and118

are therefore individually impacting the TOA radiative fluxes, it is possible to compute a119
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cloud radiative kernel that describes the TOA flux sensitivity to cloud top fraction changes120

in the histogram. We note that the simulator is essential as our technique cannot be ap-121

plied to conventional GCM output because of the invalidity of the assumption that TOA122

flux sensitivities to cloud amount perturbations in individual layers can be added linearly to123

compute the net TOA flux anomaly 1. By providing a decomposition of the full cloud field124

into its individual radiatively-relevant components, the ISCCP simulator removes the un-125

certainties associated with overlap assumptions and cloud radiative properties that preclude126

the construction of a cloud radiative kernel from conventional GCM output.127

Our method allows us to assess the cloud types (e.g., high vs. low, thin vs. thick) most128

responsible for the mean and spread of the feedback at any given location, just as the radiative129

kernels of Soden et al. (2008) made it is possible to identify the tropical upper troposphere130

as a region of primary importance to the water vapor feedback. This provides an avenue to131

identify the cloud types of greatest importance and quantify their effect on cloud feedbacks132

in different regions, and perhaps guide future efforts to find the causes of cloud changes.133

As in the case of the radiative kernels for temperature, water vapor, and surface albedo of134

Soden et al. (2008), the cloud radiative kernels computed here are appealing for two reasons135

in part. First, they are easy to use because they are applied to monthly mean model ISCCP136

1The radiative impact at the TOA of, for example, a 1% increase in cloud amount at some height depends
critically on the amount and type of cloud above and below this level, and will vary on a case-by-case basis.
This is primarily because clouds are nearly black in the IR, which means that even small perturbations at
a given level impact the radiation elsewhere. The impact of clouds is further complicated by the variety of
cloud overlap assumptions in models which determine what portion of clouds at a given level is “visible” from
space. Furthermore, cloud amount is not the only relevant property affecting TOA fluxes: Cloud radiative
properties such as LW emissivity and visible optical depth significantly impact fluxes, making a radiative
kernel derived simply from cloud amount perturbations useless. Thus nonlinearities in the impact of clouds
on radiative fluxes preclude the construction of a cloud radiative kernel from layer-by-layer perturbations of
clouds in a manner similar to that employed by Soden et al. (2008) to compute temperature, water vapor,
and surface albedo kernels. While strictly this is true for temperature and water vapor perturbations as well,
the nonlinearities in radiative transfer are much smaller than those associated with clouds.
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simulator output. This avoids having to compute cloud changes from instantaneous output137

as must be done for the cumbersome partial radiative perturbation method of Wetherald138

and Manabe (1988). Second, they are appealing because the part of the feedback calculation139

that depends on the radiation code is calculated by a single radiation code, thereby providing140

a standard that can be applied across models. Thus the cloud radiative kernels can be used141

to directly attribute cloud feedbacks to the responses of individual cloud types. Ultimately,142

this will provide for a more detailed assessment of robust and non-robust cloud responses143

across models, which could provide an avenue for assessing the realism of cloud responses144

and therefore narrowing the range of uncertainty in cloud feedback estimates.145

In the first part of this paper we document the method of computing the TOA radiative146

impact of cloud fraction perturbations in each bin of the CTP - and τ -partitioned histogram147

using a radiative transfer code. We will refer to this as a cloud radiative kernel. Then,148

multiplying the cloud radiative kernel histogram with the change in cloud fraction histogram149

per unit of global mean surface temperature change between a control and doubled CO2150

climate, we compute the cloud feedbacks in the CFMIP simulations. To build confidence151

in our method, we demonstrate that the feedback computed from ISCCP simulator output152

compares remarkably well with the adjusted change in cloud forcing method of Soden et al.153

(2008), both in the global mean sense and on a point-by-point basis. The advantage of this154

technique, however, is that it allows for unambiguous quantitative attribution of the cloud155

types that contribute to the feedback at every location across models. We do not infer the156

cloud responses that are consistent with the change in cloud forcing at each location but157

rather compute the cloud feedback directly from the change in cloud distribution. Finally,158

we finish with a brief survey of results related to the partitioning of cloud feedbacks at159
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different altitude levels and different optical depths followed by the main conclusions of this160

first paper.161

In Part II of this work (Zelinka et al. 2011b, manuscript submitted to J. Climate), we162

propose a simple method of decomposing the cloud changes that allows us to distinguish163

between and separately quantify the contribution to cloud feedback from changes in the164

cloud fractional area coverage and the distribution of cloud altitude and optical depth.165

2. Data166

We make use of output from slab ocean simulations performed in twelve models as part of167

the CFMIP experiments (McAvaney and Le Treut (2003)) and submitted to the IPCC AR4168

archive (Table 1). Experiments are separately run to equilibrium for a control climate with169

preindustrial CO2 and a perturbed climate with doubled CO2. We compute a monthly mean170

annual cycle from the last 20 years of each run, and difference them to compute feedbacks.171

All model output is regridded onto the grid corresponding to that of the radiative kernels172

of Soden et al. (2008). The bmrc1, gfdl mlm2 1, ipsl cm4, miroc hisens, mpi echam5,173

and ncar ccsm3 0 models did not archive specific humidity and/or temperature, making it174

impossible to compute cloud feedbacks from the adjusted change in cloud radiative forcing175

of Soden et al. (2008). For the models in which it is possible to calculate the adjusted176

change in cloud radiative forcing, we use the values given in Figure 1a of Webb et al. (2006)177

for the radiative forcing due to doubling CO2: 3.75 W m−2 K−1 for the ukmo hadsm4,178

ukmo hadsm3, and ukmo hadgsm1 models, 3.6 W m−2 K−1 for the uiuc model, 3.1 W m−2
179

K−1 for the miroc losens model, and the mean of these three values for the cccma agcm4 0180
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model. The cloud masking of the CO2 forcing is assumed to be 16%, as in Soden et al.181

(2008), and no forcing is assumed to be present in the SW.182

In all of the CFMIP models, ISCCP simulators are run inline during integration to183

produce distributions of cloud top fraction as functions of CTP and τ . We will refer to184

the cloud fraction as a function of CTP and τ within the histogram as C and its change185

as ∆C. Early versions of the ISCCP simulator are described in detail in Klein and Jakob186

(1999) and Webb et al. (2001). Briefly, the ISCCP simulator produces an estimate of the187

cloud distribution as a function of CTP and τ that is consistent with how a satellite-borne188

passive sensor would retrieve an atmospheric column with the properties produced by the189

model. Account is taken of the limitations and biases that exist in ISCCP retrievals of cloud190

properties such as the ability to only observe these distributions in sunlit conditions, the191

ability to only observe the highest cloud top in the case of multi-layered clouds, and the192

tendency for ISCCP retrievals to overestimate CTP for very thin clouds overlying thicker193

clouds. Using the overlap assumption in each model allows for an estimate of the total194

cloud fraction in each CTP and τ bin in a manner similar to the ISCCP retrieval algorithm195

that assigns cloud fractions as the fraction of pixels in a 280 km region that correspond to196

a particular CTP and τ category. Unlike the cloud fraction diagnostics provided by each197

individual modeling center that are defined according to each model’s cloud scheme, cloud198

fractions produced by the ISCCP simulator are defined consistently across models. This199

consistency is essential for using cloud diagnostics to compute cloud feedbacks across an200

ensemble of models using the technique outlined below. (Note that inconsistencies were201

found in the implementation of the simulator by some modelling groups; our methods of202

correction and rationale for choosing one model to exclude are described in the Appendix.)203
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While this will be a significant advance in our ability to diagnose cloud feedbacks from204

models, one must acknowledge the limitations of using ISCCP simulator output to diagnose205

cloud feedbacks. Known limitations include the finite resolution of the ISCCP histograms,206

the lack of diagnosis of cloud property changes from the dark half of the planet which might207

affect the LW cloud feedback, and the fact that the reported cloud changes may be due to208

clouds at significantly lower levels than the reported cloud-top pressure of the highest cloud209

in the column. These limitations can be expected to play some role in our ability to partition210

cloud feedback to cloud types; however, they are not likely to substantially negate the value211

of these calculations nor the fact that the ISCCP simulator remains the best possible to way212

to analyze cloud property feedbacks in the CFMIP1 archive.213

3. Computation of Cloud Radiative Kernels214

To assess the role of changes in histogram-partitioned cloud fraction (∆C) on the TOA215

radiative fluxes, we first compute histograms of overcast sky cloud radiative forcing in a216

manner similar to that described in Hartmann et al. (2001) and Kubar et al. (2007). Unlike217

those studies, we use zonal and monthly mean model fields of temperature and water vapor218

that are computed from the annual cycles of the control runs of models 1-6 as input to219

the Fu-Liou radiation code (Fu and Liou (1992)). We assume a spatially-invariant surface220

emissivity of 0.99, uniform CO2, CH4, and N2O mixing ratios of 330, 1.6, and 0.28 ppmv,221

respectively, a standard profile of ozone mixing ratio, and a solar constant of 1366 W m−2.222

The first step in constructing the overcast-sky cloud forcing histogram at any given223

location and time is to calculate clear-sky TOA LW and SW fluxes. “Clear sky” simply224
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means we set liquid water content and ice water content to zero throughout the column in225

the radiative transfer model. Then, the Fu-Liou code is run again 49 times, once for each of226

the seven CTP and seven τ bins, each time placing a cloud in the column with properties227

corresponding to the midpoints of each τ -CTP bin. The TOA fluxes computed by the code228

for each bin of the histogram are then subtracted from the clear-sky flux to compute a229

histogram of overcast-sky cloud forcing which represents the impact of each cloud type on230

the TOA radiative fluxes relative to clear skies.231

Clouds are “inserted” into the atmospheric column of the radiative transfer model by232

setting liquid or ice water content to nonzero values between the cloud top and base, with the233

geometric thickness determined using empirical relationships between cloud top temperature234

and τ given in Minnis et al. (2011, manuscript submitted to IEEE Trans. Geosci. Remote235

Sens.). Clouds with tops warmer than 263 K are assumed to be liquid, with a constant236

liquid water content throughout the cloud equal to the liquid water path divided by the237

cloud geometric thickness. We compute the liquid water path using τ and Equation 1 of238

Slingo (1989) with the assumption of a constant effective radius of 10 µm. For clouds239

with tops colder than 263 K, we compute ice water content using the parameterization of240

extinction coefficient in terms of ice water content and generalized effective ice crystal size241

given in Equation 3.9a of Fu (1996). The extinction coefficient, which we assume is constant242

throughout the depth of the cloud, is simply the optical depth divided by the cloud geometric243

thickness. We compute the generalized effective size using Equation 3.12 of Fu (1996) with244

an assumed effective radius of 30 µm. Because we assume both the extinction coefficient and245

effective radius are constant, the ice water content is also constant throughout the depth of246

the cloud.247
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Our fairly crude parameterization of clouds would likely be inappropriate for correctly248

computing the impact of clouds on atmospheric radiative heating rates or radiative fluxes249

at the surface. However, our goal is only to compute TOA fluxes that are realistic for250

clouds with given gross features. It is less important whether the vertical structure of cloud251

properties is highly realistic, as long as the cloud top temperature and the total optical depth252

are correctly represented in the radiation code.253

To accurately capture the diurnal range of incident solar radiation, TOA fluxes with and254

without clouds are computed for the zenith angles for each of 24 hours of a day and then255

averaged before being differenced. We use the 24 zenith angles appropriate for each month256

and latitude, using a day in the middle of each month. Though our use of zonal mean257

profiles of temperature and humidity does not allow us to take into account any longitude258

dependence that may impact the clear-sky fluxes, we do account for spatial differences in259

surface albedo by performing every calculation 10 times, one for each of ten surface albedo260

bins between 0 and 1. This will allow us to account for the spatial variation in SW cloud261

forcing that comes simply from variations in surface albedo that impact clear-sky fluxes (i.e.,262

unrelated to clouds). In sum, we generate a LW and SW overcast sky cloud forcing histogram263

for every latitude and month, and for ten evenly-spaced surface albedo bins between 0 and264

1.265

Because the computation of cloud forcing in each bin of the histogram is performed using

a single atmospheric column with only that cloud type present, we refer to it as an overcast-

sky cloud forcing histogram. Dividing the radiative forcings by 100 expresses the values in

units of W m−2 %−1. The computed histogram is a cloud radiative kernel (K) giving the

12



sensitivity of TOA fluxes (R) to perturbations in cloud fraction as functions of CTP and τ :

K ≡
∂R

∂C
. (1)

As in the case of the standard temperature and water vapor radiative kernels of Soden et al.266

(2008), the cloud radiative kernel depends on latitude and month. It is slightly different267

in that we did not compute a kernel for each longitude but we did compute a separate268

kernel for each of ten surface albedo bins. Our computation is much simpler than that of269

Soden et al. (2008), as we input zonal mean monthly mean thermodynamic profiles averaged270

across six models into the Fu Liou code, whereas they called the GFDL model’s radiation271

code 8 times daily at every location on the planet for each perturbation level and quantity272

for a 1-year simulation to compute a TOA flux sensitivity to tiny perturbations. Certainly273

more accurate methods of computing the cloud radiative kernels could be performed than274

is performed here, but we demonstrate in this paper that our technique is useful and quite275

accurate.276

In Figure 1, we show the global and annual mean of the cloud radiative kernels. The277

LW cloud radiative kernel is positive for all cloud types, indicating that an increase in cloud278

fraction results in a decrease in outgoing longwave radiation (OLR), and vice versa. The279

magnitude of the kernel is sensitive to both τ and CTP . For thin clouds (τ<3.6), OLR is280

sensitive to changes in both their optical depth and their vertical distribution, but for clouds281

with τ>3.6, the sensitivity of OLR to changes in the optical depth distribution becomes282

saturated and OLR is solely impacted by changes in the vertical distribution. Conversely, the283

SW cloud radiative kernel is negative for all cloud types, indicating that increases (decreases)284
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in cloud fraction result in increased (decreased) SW reflection to space. The impact of cloud285

fraction changes is much greater for thick clouds but does not depend strongly on CTP .286

The small dependence on CTP exhibited in the SW cloud radiative kernels is most likely287

due to the decreasing attenuation of SW radiation by above-cloud gaseous absorption with288

decreasing CTP .289

Generally, a shift in the cloud distribution towards higher and thinner bins results in a290

positive (warming) impact on net TOA fluxes. However, note that the largest positive net291

flux sensitivity is for increases in cloud fraction for τ between 1.3 and 3.6 (see also Fig. 13b292

of Ackerman et al. (1988)). A shift in the distribution towards lower and thicker clouds293

negatively impacts the net TOA fluxes because of increased SW reflection and LW emission.294

4. Computation of Cloud Feedback Using Cloud Radia-295

tive Kernels296

Multiplying the cloud radiative kernel histogram (K) by the histogram of the change in

cloud fraction (∆C) gives an estimate of the contribution of each cloud type to the change

in TOA radiation associated with climate change (in this case, a doubling of CO2):

∆R = K ∗ ∆C. (2)

For a given location and month, ∆C is multiplied by the cloud radiative kernel histogram

that corresponds to the control climate’s clear-sky surface albedo for that location and
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month. Because the kernel is computed using the atmospheric and surface conditions from

the control climate, the change in TOA fluxes computed in this manner is due solely to the

change in clouds (i.e., no clear sky flux changes are included), which is the quantity relevant

for cloud feedback. Dividing this response by the change in global mean temperature (∆Ts)

provides an estimate of the cloud feedback due to each cloud type (f):

f =
∆R

∆Ts

. (3)

Note that both f and ∆R are matrices. Summing the resultant histogram over all cloud297

types produces an estimate of the local contribution to the cloud feedback, which can then298

be integrated over the entire planet to compute the global mean cloud feedback.299

Before discussing our cloud feedback results, we wish to note that hereafter we refer to the300

radiative perturbations brought about by cloud changes as cloud feedback, with the implicit301

assumption that the simulated changes in clouds evolve with the change in global mean302

surface temperature. Gregory and Webb (2008) have provided evidence that a portion of the303

cloud-induced radiation response that is typically considered cloud feedback actually occurs304

due to very rapid tropospheric adjustment following a step change in CO2 concentration,305

and that the component of cloud change that evolves with temperature is less than expected306

in most models. Colman and McAvaney (2011) have confirmed this effect in the CAWCR307

(formerly BMRC) model, but note that it primarily affects the SW cloud amount feedback,308

whereas other cloud feedbacks generally behave in the classical sense. Our analysis does not309

distinguish between cloud changes that emerge with increasing global mean temperature and310

those that occur rapidly due to doubling of CO2; thus what we refer to as cloud feedback311
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may in some cases be a combination of these effects. Separating these components is not312

possible with the experiments performed in CFMIP1; it will be possible with experiments313

currently being performed for CFMIP2.314

In the left column of Figure 2 we show histograms of (a) 1xCO2 and (b) 2xCO2 global315

mean cloud fraction of the ukmo hadsm4, ukmo hadsm3, ukmo hadgsm1, miroc losens,316

and cccma agcm4 0 models, along with (c) their difference expressed per unit change in317

each model’s global mean surface temperature between the two states. The uiuc model is318

excluded for reasons discussed below. Global mean cloud fraction decreases in these models319

by 0.38% K−1 on average, with the reductions in cloud fraction occuring in a majority of320

CTP and τ bins. Large reductions in cloud fraction occur in the highest CTP bin (i.e., the321

lowest clouds) in the 0.3 - 9.4 optical depth range. Cloud fraction increases in the lowest322

CTP bin (i.e., the highest clouds) at all optical depths except for τ between 0 and 0.3.323

Cloud fraction also increases in the 680-1000 hPa CTP bins for optical depths greater than324

23 and in the 180-310 hPa CTP bin for optical depths greater than 3.6.325

Multiplying the ∆C histogram with the LW, SW, and net K histograms shown in Figure 1326

produces a histogram showing the contribution of each cloud type to the respective feedbacks327

(Figure 2d, e, and f). Note that the multiplication occurs for each location and month and is328

then averaged for this figure. The large increases in cloud fraction in the upper troposphere329

project strongly onto the LW cloud radiative kernel, which is most sensitive to cloud fraction330

changes in the lowest CTP bins. Where cloud fractions increase, the contribution to the331

LW cloud feedback is positive, and vice versa. Cloud fraction increases, primarily those332

occurring in the lowest CTP bin (i.e., the highest clouds), contribute 0.54 W m−2 K−1 to333

the LW cloud feedback, while cloud fraction decreases reduce the LW cloud feedback by 0.27334
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W m−2 K−1, resulting in a LW cloud feedback due to all cloud fraction changes of 0.27 W335

m−2 K−1.336

Zelinka and Hartmann (2010) showed that the tendency for tropical (30◦S-30◦N) clouds337

to rise contributed significantly to the LW cloud feedback, but that high cloud fraction also338

systematically decreased as the planet warmed. They found that while high cloud fractional339

changes were important for changes in LW fluxes locally, the net effect over the entire340

Tropics was rather small and positive. The effect of high cloud reduction on the tropical341

mean LW cloud feedback may have been small because the decreases preferentially impacted342

thin clouds that have a smaller influence than thicker clouds on LW cloud forcing. Here we343

can quantify these competing effects. Hereafter we will use the ISCCP cloud classifications344

of Rossow and Schiffer (1999), namely low: 680 ≤ CTP < 1000 hPa, middle: 440 ≤ CTP <345

680 hPa, high: 50 ≤ CTP < 440 hPa, thin: τ < 3.6, medium: 3.6 ≤ τ < 23, and thick:346

τ ≥ 23. Averaged across all models excluding uiuc and mpi echam5 (for reasons discussed347

below and in the Appendix), the change in tropical high cloud fraction is -0.03% K−1, with348

thin, medium, and thick cloud changes equal to -0.04, 0.01, and slightly less than 0% K−1,349

respectively. Tropical high cloud changes alone contribute 0.26 W m−2 K−1 to the LW cloud350

feedback, with thin, medium, and thick cloud changes contributing 0.05, 0.12, and 0.09 W351

m−2 K−1, respectively. Note that even though thin and thick high cloud fractions decreased,352

their contributions to the LW cloud feedback are positive because of increased cloud altitude353

that manifests itself as increased cloud fraction in the 50-180 hPa bin and decreased cloud354

fraction in the 180-310 hPa bin. These results show that decreases in tropical high clouds355

are substantial, but because the reductions are primarily in thinner, warmer clouds, their356

combined net effect is a positive contribution to the LW cloud feedback, as found in Zelinka357
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and Hartmann (2010) for the fully coupled GCMs. A more complete decomposition of the358

LW cloud feedback into the components due to changes in cloud altitude, optical depth, and359

fraction will be presented in Part II.360

In contrast to the LW cloud feedback, cloud changes throughout the depth of the tropo-361

sphere contribute to the SW cloud feedback, with large positive contributions coming from362

bins in which cloud fractions decrease, and vice versa. Cloud fraction changes project more363

strongly onto the SW cloud radiative kernel if they occur at higher optical depths; thus the364

effect of cloud fraction changes in the lowest τ bins are largely irrelevant for the SW cloud365

feedback.366

The net cloud feedback histogram shares features of both the LW and SW histograms,367

but is largely dominated by the positive SW cloud feedback for all pressures greater than368

about 310 hPa due to reductions in low and mid-level cloud fraction. At pressures less369

than 310 hPa, LW and SW cloud feedback components compete against each other for370

dominance. The increase in cloud fraction in the lowest CTP bin contributes more strongly371

to the positive LW cloud feedback than to the negative SW cloud feedback for intermediate372

optical depths, but the opposite is true for thick high clouds. In the end, large reductions in373

middle- and low-level clouds that strongly reduce the amount of reflected radiation, coupled374

with increases in high level clouds that strongly reduce the amount of emitted LW radiation375

results in a net cloud feedback of 0.71 W m−2 K−1. Considering that the average combined376

water vapor plus lapse rate feedback is 0.63 W m−2 K−1 in this ensemble, the net cloud377

feedback is quite strong.378
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5. Effectiveness of the Cloud Radiative Kernel Method379

in Computing Cloud Feedback380

In this section we compare the cloud feedback computed using the cloud radiative ker-381

nels applied to ISCCP simulator output with the cloud feedback computed according to382

Soden et al. (2008). The latter technique involves adjusting the change in cloud radiative383

forcing by the amount of cloud masking that occurs in the other feedbacks and in the radia-384

tive forcing. Only the ukmo hadsm4, ukmo hadsm3, ukmo hadgsm1, uiuc, miroc losens,385

and cccma agcm4 0 models archived enough data to compute the adjusted change in cloud386

radiative forcing; thus we can only compare the two methods for those models.387

In Figure 3 we show a point-by-point comparison of the LW and SW cloud feedbacks388

computed using cloud radiative kernels with those computed by the adjusted change in cloud389

radiative forcing method. Each point represents the feedback computed for a single month at390

a single location in the model, and locations in which the magnitude of the change in clear-sky391

surface albedo exceeds the 90th percentile have been removed (for reasons discussed below).392

Values of both LW and SW cloud feedback computed using the cloud radiative kernels393

developed here compare remarkably well on a point-by-point basis with values computed394

by adjusting the change in cloud radiative forcing. The regression slopes for every model395

are generally close to unity, with the exception of the SW cloud feedback comparison in396

the uiuc model. Large R2 values for all but the miroc losens model indicate that these two397

measures are highly correlated. Relative to the adjusted change in SW cloud radiative forcing398

(SWCF ), the cloud radiative kernel calculation tends to overestimate the magnitude of both399

positive and negative SW cloud feedbacks, as the slopes in panels g-l are all ≥ 1. Although400
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still large for every model except miroc losens, the R2 values are systematically lower for401

the comparisons of LW cloud feedback than for the comparisons of SW cloud feedback in402

every model. The somewhat larger slope in panel f likely reflects our choice to rescale the403

LW kernel in the same manner as the SW kernel for the cccma agcm4 0 model, when a404

different scaling may be more appropriate (see the Appendix). Similarly, the slope between405

estimates of LW and SW cloud feedbacks cloud kernel-derived estimates and adjusted change406

in cloud forcing-derived in the uiuc model deviate substantially from unity, but the cause407

of this discrepancy remains unclear. Finally, the somewhat lower correlation between the408

two measures of cloud feedback for the miroc losens model may arise in part because of409

mis-matches between the archived diagnostics in this model. Temperature and humidity410

profiles are archived only over the first 15 years of the 2xCO2 run, while the histogram is411

only archived over the last 5 years of the run (i.e., they are archived for non-overlapping412

time periods). Thus, the adjusted change in cloud forcing is computed using differences413

between two climate states that are different from the two climate states used to compute414

cloud feedback with the cloud kernels in the miroc losens model.415

Our comparisons between the two methods indicated poor agreement in some models416

over regions in which clear-sky surface albedo changes significantly between the two climate417

states. Visual inspection of feedback maps (not shown) indicated that a large percentage418

of these points came from high latitude regions where the adjusted change in cloud forcing419

method produced anomalous SW cloud feedbacks surrounded by regions with oppositely-420

signed SW cloud feedbacks. The cloud radiative kernel technique, on the other hand, ex-421

hibited a relatively “smooth” geographic distribution of feedback values at high latitudes422

that is arguably more realistic. There are reasons to expect the adjusted change in cloud423
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forcing method to produce spurious cloud feedback values over regions in which clear-sky424

surface albedo changes substantially. Consider a hypothetical sunlit region with sea ice in425

the control climate but with no sea ice in a warmed climate and assume no change in clouds426

whatsoever. Since the cloud feedback is calculated as the impact of cloud changes on TOA427

radiation with everything else fixed, by definition, cloud feedback should be zero. The change428

in SWCF , conversely, will be negative because of the increased contrast between clear and429

all sky SW fluxes. The cloud kernel method proposed here will easily calculate zero cloud430

feedback because the kernel is being multiplied by a change in cloud fraction histogram con-431

taining zeros. In order for the adjusted change in SWCF to equal zero requires an almost432

miraculous positive adjustment made up of contributions from how much the surface albedo433

and SW water vapor feedbacks are masked by clouds. This miraculous adjustment is nearly434

impossible since the all-sky radiative kernels used to compute cloud masking are informed435

only by the clouds that are present in the GFDL model. Any difference between the mean436

state cloud fields in the model in which the kernel is applied and those of the model in which437

the kernel was calculated will result in an incorrect estimate of the cloud masking, and, by438

extension, the cloud feedbacks in the model in which the kernel is applied. Regions near439

the sea ice edge are particularly susceptible to this problem, as open ocean regions tend to440

be cloudier than sea-ice regions. The local masking effect of clouds would then depend on441

whether the grid point was sea-ice covered in the mean state of the GFDL model. Thus442

small differences in the edge of the sea-ice between the model in which the radiative kernel is443

calculated and the model in which the kernel is applied could plausibly create spurious cloud444

feedbacks along the sea-ice edge as we have found. Furthermore, the wide model diversity445

in high latitude cloud properties (e.g., Gorodetskaya et al. (2008)) exacerbates this problem.446
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In light of these considerations, we argue that the cloud radiative kernels developed here are447

more accurate in regions where surface albedo changes significantly, and we exclude from448

Figure 3 locations in which the magnitude of the change in clear-sky surface albedo exceeds449

the 90th percentile of all clear-sky surface albedo changes.450

A potential limitation of the cloud radiative kernel technique developed here is the fact451

that it relies on simulated cloud fields that are only present for sunlit months in which a452

satellite sensor could retrieve visible optical depths. Only the sunlit portion of the diurnal453

cycle of cloudiness is sampled by the ISCCP simulator, and in polar regions, entire months454

are devoid of cloud information when the sun does not rise above the horizon. This is455

potentially problematic for diagnosing LW cloud feedback because cloud fields impact LW456

radiation at all times, not just when the sun is up. Thus, if the change in cloud properties457

between the 2xCO2 climate and the 1xCO2 climate is systematically different between night458

and day or between dark and sunlit seasons, this technique will be biased, capturing only the459

cloud changes that occur for sunlit months. We find that in the annual mean, the adjusted460

change in LW cloud forcing at high latitudes agrees to within 0.1 W m−2 K−1 of the value461

computed when only sunlit months are sampled, suggesting that this is not a major issue.462

Obviously the effect of simulator application to sunlit months has no effect on SW cloud463

feedback estimates, as cloud changes occurring when the sun is down do not impact SW464

radiative fluxes anyway.465

In Figure 4 we show the cloud radiative kernel-derived computation of global mean LW,466

SW, and net cloud feedbacks scattered against the estimates derived using the adjusted467

change in cloud radiative forcing method. In the global mean, cloud kernel-derived estimates468

of LW cloud feedback tend to be larger than the adjusted change in LW cloud radiative469
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forcing (∆LWCF ) cloud feedback (in five out of six models) whereas the SW cloud feedback470

estimates computed here fall evenly on either side of the one-to-one line when plotted against471

the adjusted ∆SWCF values. The net cloud feedbacks computed with the cloud radiative472

kernels generated here tend to overestimate the adjusted ∆NetCF cloud feedback, and this473

is primarily caused by discrepancies in the LW term. Cloud feedback estimates for the474

uiuc model stand out as particularly anomalous. It is noteworthy, however, that this model475

only appears anomalous when its cloud kernel-computed feedbacks are compared with the476

adjusted change in cloud radiative forcing, not when they are compared with the cloud477

kernel-computed feedbacks of the other models. That cloud feedbacks computed using the478

cloud radiative kernels (which rely on a standard radiative transfer code and a standard479

definition of cloud) are in better agreement across models than feedbacks computed from480

adjusting the change in cloud forcing (which relies in part on the cloud radiative forcing481

computed in each model’s radiative transfer scheme) suggests that the discrepancy arises482

due to anomalous features of the uiuc model’s radiative transfer scheme relative to the those483

of the other models and to that of the kernel. Indeed, Tsushima et al. (2006) noted that484

this model has the lowest cloud albedo forcing despite having the largest total water content485

among the 5 models they analyzed. In light of the anomalous behavior of the uiuc model486

apparent in Figure 3d and j and Figure 4, we exclude this model from any ensemble means,487

including those shown in Figure 2.488

In Figure 5 we show the full spatial structure of the cloud feedbacks computed with489

the cloud radiative kernels (left column) and computed by adjusting the change in cloud490

forcing (middle column) averaged across the ukmo hadsm4, ukmo hadsm3, ukmo hadgsm1,491

miroc losens, and cccma agcm4 0 models. The difference maps are also provided in the492
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right column. The net cloud feedback is generally positive between 50◦S and 65◦N, exceptions493

being just south of the equator in the Eastern Pacific, in the subtropical Atlantic, and over494

the Tibetan Plateau. The low latitude signal is dominated by the SW cloud feedback, but495

the positive LW cloud feedback on the equator in the Pacific contributes significantly to496

the positive net cloud feedback there. Large positive SW cloud feedback outweighs large497

negative LW cloud feedback over the Amazon, in the South Pacific Convergence Zone and498

over southern Africa. Negative SW cloud feedback outweights positive LW cloud feedback499

in the regions south of 50◦S and north of 65◦N.500

In general, the differences between cloud feedback estimates computed using the cloud501

radiative kernel developed here and the adjusted change in cloud radiative forcing are char-502

acterized by an overestimation of the magnitude of the local feedback value (i.e., the kernel503

value is greater where the feedback is positive and smaller where the feedback is negative).504

While the errors in the SW cloud feedback average out to nearly zero globally (both meth-505

ods yield a global mean SW cloud feedback of 0.44 W m−2 K−1), the LW cloud feedback506

is slightly overestimated using the cloud radiative kernel technique. Thus, the net cloud507

feedback calculated with the cloud radiative kernels is slightly larger (roughly 6% larger)508

that that calculated by the adjusted change in cloud forcing method. Still, we argue that509

this technique works remarkably well considering the myriad assumptions that are made in510

constructing cloud radiative kernel histograms. The great advantage of using cloud radia-511

tive kernels over other methods of computing cloud feedback is that it allows one to directly512

calculate the contributions of different cloud types to cloud feedback, as demonstrated in513

the following section.514
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6. Partitioning the Cloud Feedback by Cloud Types515

The computed histograms allow one to directly attribute the contributions of specific516

cloud types to the cloud feedback at each location. In Figure 6 we show the zonal mean517

contribution of high, middle, and low clouds to the LW, SW, and net cloud feedbacks av-518

eraged across all twelve models except the uiuc and mpi echam5 models. As expected519

based on the fact that LW cloud forcing is greatest for high clouds, the LW cloud feedback is520

dominated at all latitudes by the response of high clouds (Figure 6a). Low cloud changes are521

irrelevant at all latitudes, but middle level cloud changes act to slightly reduce the LW cloud522

feedback in the midlatitudes. The results shown here add legitimacy to the assumptions523

made in Zelinka and Hartmann (2010) that low cloud changes have a negligible impact on524

OLR compared to high cloud changes.525

In contrast, cloud fraction changes at all altitudes are relevant for SW cloud feedback526

at all latitudes (Figure 6b). With the exception of the high latitudes, changes in low and527

middle level clouds tend to contribute to a positive SW cloud feedback. High cloud changes528

contribute negatively to the SW cloud feedback in the global mean, but most prominently529

in the deep Tropics (due mainly to large increases over the Equatorial Pacific) and poleward530

of about 40◦ in both hemispheres. The effect of increases in high cloud fraction in the531

deep Tropics strongly opposes the effect of decreases in the other cloud types, producing a532

minimum value in the SW cloud feedback. Positive SW cloud feedbacks from middle level533

clouds are nearly 70% as large as those from low level clouds in the global mean, and are534

larger in the middle and high latitudes, a result that is not generally acknowledged and is535

frequently overshadowed by the focus on feedback spread arising from subtropical low cloud536
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changes2.537

The signs of each cloud type’s contributions to the SW cloud feedback (i.e., negative for538

high clouds and positive for low and middle level clouds) are consistent with those found for539

the doubled CO2 slab ocean experiments analyzed by Yokohata et al. (2010), who used the540

approximate partial radiative perturbation method of Taylor et al. (2007) in combination541

with ISCCP simulator output in two perturbed physics ensembles of the MIROC3.2 and542

HadSM3 models to separate the contribution of clouds at different altitudes to the SW543

cloud feedback.544

Cloud changes in every height category contribute positively to the net cloud feedback545

(Figure 6c). Because of their largely compensatory effects on the SW and LW cloud feed-546

backs, high cloud changes contribute less than low cloud changes to the net cloud feedback547

at all latitudes. Mid-level cloud changes, which only appreciably contribute to the SW cloud548

feedback, contribute nearly the same amount to the global cloud feedback as high cloud549

changes and have a very similar latitudinal distribution, except in high southern latitudes.550

Middle- and high-level cloud changes together are responsible for more than half of the global551

and ensemble mean net cloud feedback.552

2A well-known tendency of the ISCCP retrieval algorithm that is purposely built into the simulator is
to identify a single cloud with a CTP at mid-levels for scenes in which thin high clouds overlap low clouds
(e.g., Jin and Rossow (1997); Stubenrauch et al. (1999)). Motivated by a concern that the significant mid-
level cloud feedback we have inferred may arise partly due to clouds that are not actually at mid-levels,
we calculated high, middle, and low cloud amounts by averaging the cloud amount diagnostic provided by
seven modelling centers within the 50-440 hPa, 440-680 hPa, and 680-1000 hPa pressure levels, respectively.
Comparing maps of the sign of these cloud amount changes with the sign of the corresponding cloud frac-
tion anomlies derived from the histograms (not shown), we found that 14% of all points exhibit mid-level
cloud changes of opposite sign, which is comparable to the 13% for high clouds and 17% for low clouds.
Furthermore, the number of gridpoints in which the signs are opposite and the histogram-derived mid-level
cloud fraction anomalies are positive is roughly equal to those in which the histogram-derived mid-level cloud
fraction anomalies are negative, implying no systematic disagreement. Although this is a crude comparison,
it shows that, over the vast majority of gridpoints, middle-level cloud changes are indeed causing mid-level
cloud feedbacks.
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In Figure 7 we show the zonal mean contribution of thin, medium, and thick clouds to553

the LW, SW, and net cloud feedbacks for all twelve models except the uiuc and mpi echam5554

models. In the global mean sense, thick clouds dominate the LW cloud feedback, particularly555

at high latitudes (Figure 7a). Clouds in all three thickness categories contribute equally to556

the large positive LW cloud feedback in the deep Tropics (7.5◦S - 15◦N), and cloud fraction557

changes in the thin and medium thickness categories tend to oppose cloud fraction changes558

in the thick category poleward of about 50◦ in either hemisphere.559

In the global mean, the SW cloud feedback is dominated by the contribution from medium560

thickness cloud changes, which is positive everywhere but over the poles (Figure 7b). With561

the exception of the very high latitudes, thin cloud changes contribute minimally to the562

SW cloud feedback. The sharp decrease in the SW cloud feedback with latitude in the563

midlatitudes is entirely caused by increases in thick clouds and is generally opposed by564

smaller cloud fraction decreases in the other τ categories. Particularly striking is the negative565

feedback in the SH storm track region which reaches a peak value of -1.5 W m−2 K−1, with566

thick cloud changes alone contributing -2.1 W m−2 K−1.567

It may be somewhat surprising that medium thickness cloud changes dominate over thick568

cloud changes for the global mean SW cloud feedback considering that SW flux sensitivity569

increases with τ , leading one to expect SW cloud feedback to be dominated by changes in570

thick clouds. However, it is clear from the latitudinal structure of the contributions that571

thick cloud fraction changes are at least as important at most latitudes as medium thickness572

cloud changes; the difference therefore arising from the fact that medium thickness cloud573

changes contribute positively almost everywhere whereas the thick cloud contribution is574

strongly positive equatorward of about 50◦ and negative elsewhere. It is interesting that575
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medium-thickness cloud changes contribute positively to SW cloud feedback at nearly every576

latitude.577

Cloud fraction changes in all optical depth categories contribute positively to the net578

cloud feedback, with the medium thickness cloud changes dominating in the global mean due579

to their uniformly positive contributions (Figure 7c). Equatorward of about 45◦, thick and580

medium thickness cloud changes contribute about equally to the net cloud feedback, with581

thick clouds primarily causing the abrupt latitudinal transition from positive to negative582

cloud feedback in the midlatitudes.583

In Figure 8 we show global mean cloud feedback estimates and their partitioning among584

high, middle, and low clouds for all models except uiuc and mpi echam5. In this ensemble585

of ten models, 65% of the net cloud feedback comes from the SW cloud feedback and 35%586

from the LW. For both the global mean SW and LW cloud feedbacks, only one model has587

negative values (not the same model). Considerable spread is evident in both the LW and588

SW components of cloud feedback, though it is larger in the SW. Anticorrelation between589

LW and SW cloud feedback estimates across models results in the net cloud feedback having590

less inter-model spread than that of SW cloud feedback.591

As mentioned previously, LW cloud feedback is dominated by the response of high clouds,592

with middle and low clouds making small negative contributions. Clouds at all vertical levels593

contribute to the SW cloud feedback, with high clouds contributing negatively and middle594

and low cloud contributing positively. Considerable inter-model spread is evident in the595

contributions of clouds at all heights to the SW cloud feedback. High, middle, and low596

cloud changes all contribute positively to the net cloud feedback. The contribution of cloud597

changes at all heights to the net cloud feedback exhibits appreciable spread, but the spread598
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is largest for low clouds, a result consistent with many previous studies (e.g., Bony and599

Dufresne (2005)). An important and generally unappreciated result shown in Figure 8 is600

that the high cloud contribution to the inter-model spread in net cloud feedback is smaller601

than the contribution from low clouds not because the response of high clouds is small602

and/or consistent across models. Rather, the inter-model spread in the response of high603

clouds contributes substantial spread to both LW and SW cloud feedbacks. Specifically, the604

contributions of high cloud changes to LW and SW cloud feedbacks each span a range of605

about 1 W m−2 K−1, whereas the contribution of low cloud changes to SW cloud feedback606

spans a range of only 0.67 W m−2 K−1. Because the spread in high cloud-induced LW607

and SW components is partially compensatory, however, the spread in net cloud feedback608

induced by high cloud changes is smaller than that induced by low cloud changes, for which609

no such compensation occurs. The high cloud-induced SW cloud feedback represents the610

feedback component with the largest inter-model spread.611

In Figure 9 we show global mean cloud feedback estimates and their partitioning among612

thin, medium, and thick clouds for all models except uiuc and mpi echam5. Thin cloud613

changes generally make a small contribution to the feedback in all models. Thick clouds614

make a larger contribution to the positive LW cloud feedback than do medium thickness615

clouds, but the multi-model mean SW cloud feedback is dominated by medium thickness616

cloud reductions, with no contribution from thick cloud changes. Again, note that thick617

clouds make no contribution to the global mean SW cloud feedback because their lower618

latitude contribution exactly compensates their higher latitude contribution (Figure 7b).619

Interestingly, all models exhibit a positive contribution to SW cloud feedback from medium-620

thickness cloud changes, whereas roughly an equal number of models exhibit positive and621
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negative SW cloud feedback contributions from thick cloud changes. Conversely, all models622

exhibit positive contribution to LW cloud feedback from thick cloud changes, whereas roughly623

an equal number of models exhibit positive and negative LW cloud feedback contributions624

from medium-thickness cloud changes. The spread in SW cloud feedback due to both medium625

and thick cloud types is large, but because the SW cloud feedback is systematically positive626

for medium thickness clouds, it represents the largest positive contribution to the ensemble627

mean cloud feedback of all thickness categories. Indeed, the robust decrease in medium-628

thickness clouds is the single most important contributor to the ensemble mean positive net629

cloud feedback, larger than both the contribution of high cloud changes to the LW cloud630

feedback and the contribution of low cloud changes to the SW cloud feedback.631

7. Conclusions632

In this paper we demonstrated a new method of computing cloud feedbacks in models633

that output simulated cloud fractions as functions of cloud top pressure and cloud optical634

depth. ISCCP-simulated cloud fields have a distinct advantage over the standard cloud635

fraction profiles output by GCMs in that they are defined consistently across models and636

represent the “radiatively-relevant” cloud tops that are directly impacting TOA fluxes. The637

latter property allows us to compute TOA flux sensitivities for fluctuations in each cloud638

type. To do so, we insert cloud liquid and ice profiles appropriate for each individual CTP639

and τ bin in the ISCCP histogram into the Fu-Liou radiative transfer model. We consider640

this work an extension of the radiative kernel technique into cloud fields. Like the standard641

kernels of Soden et al. (2008), the cloud radiative kernels computed here are functions of642
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space and time (latitude, month, and pressure), but they have an additional dependence643

on cloud optical depth. Unlike the standard kernels, we did not compute kernels for every644

longitude, but rather for ten bins of surface albedo.645

Cloud feedback is computed using the kernels in a similar manner to the computation of646

standard feedbacks as in Soden et al. (2008). Specifically, at every location in the model, the647

change in cloud fraction in each CTP -τ bin between the doubled CO2 run and control run is648

multiplied by the corresponding bin of the cloud radiative kernel. The feedback is computed649

by summing over all bins of the histogram and dividing by the global mean temperature650

change.651

Several appealing aspects of this technique are worth highlighting. First, cloud feedbacks652

are computed directly from the change in cloud fields, which means the contributions to653

the feedback from specific cloud types are computed rather than inferred. Second, cloud654

feedbacks are computed using the same kernel across models, which isolates the role of655

cloud changes in driving intermodel differences in feedback values, without any model-to-656

model variation in the radiative code computing the feedback. Third, monthly mean ISCCP657

simulator output is all that is needed to compute the feedback, which makes it a very658

straightforward calculation, one that does not require extracting instantaneous cloud output659

in order to implement the partial radiative perturbation technique or adjusting the change660

in cloud forcing by the amount of masking in all other feedbacks. Finally, clear-sky changes661

that are irrelevant for cloud feedback but may be difficult to remove using other techniques662

are easily avoided in the computation, resulting in TOA flux anomalies that are solely due663

to changes in the cloud fraction histogram.664

We have demonstrated that cloud feedbacks computed with the cloud radiative kernels665
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compare favorably with values computed by adjusting the change in cloud radiative forcing666

(Soden et al. (2008)). This is especially true for SW cloud feedbacks, as the LW and net667

cloud feedbacks are generally slightly overestimated relative to the adjusted change in cloud668

forcing. On a point-by-point basis, cloud feedbacks computed using the two methods agree669

closely, nearly following a one-to-one line (except in the SW for the uiuc model) with high670

correlation in every model except the miroc losens model.671

We find that changes in high clouds make the largest contribution of any cloud type to672

the LW cloud feedback at all latitudes in the ten model ensemble mean, especially in the673

deep tropics. This is consistent with the structure of the LW cloud kernel, which indicates674

that the sensitivity of OLR to cloud fraction changes increases with decreasing cloud top675

pressure. However, because high cloud increases contribute negatively to the SW cloud676

feedback, their contribution to the net cloud feedback is considerably reduced. In contrast,677

low cloud changes, which only impact the SW cloud feedback, make up a larger contribution678

to the net cloud feedback than cloud fraction changes at other altitudes. However, it is679

important to bear in mind that even for the net cloud feedback, the positive contribution680

from the sum of middle- and high-level topped clouds slightly exceed the contribution from681

low level clouds in the global mean. Furthermore, that the spread in net cloud feedback is682

dominated by the contribution from low clouds should not be taken as evidence that high683

cloud changes have either a small or consistent impact on radiative fluxes across models.684

Rather, high cloud changes induce an even wider range of contributions to SW and LW685

cloud feedbacks than do low cloud changes, but partial compensation between the LW and686

SW impacts of high cloud changes reduces their contribution to the spread in net cloud687

feedback relative to low cloud changes, whose impacts in the SW are not offset in the LW.688
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Cloud changes in all thicknesses categories contribute positively to the net cloud feedback,689

and increases in thick clouds at high latitudes in either hemisphere cause the rapid decrease690

of SW and net cloud feedbacks with latitude poleward of about 50◦. Although they exhibit691

considerable inter-model spread, contributions to SW and net cloud feedback from medium692

thickness clouds are systematically positive across models, which results in medium-thickness693

cloud changes representing the single most important contributor to the net cloud feedback.694

In the companion to this paper, we propose a technique to decompose the change in695

cloud fraction within the ISCCP simulator histograms in such a way as to isolate the con-696

tributions to cloud feedback from changes in cloud amount, height, and optical thickness.697

This decomposition is performed to highlight the nature of cloud changes that give rise to698

cloud feedbacks, and provides an indication of the physical processes that are important for699

both the mean and spread in cloud feedback across models.700
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APPENDIX714

715

Verification of Proper ISCCP Simulator716

Implementation717

a. Consistency Between Measures of Total Cloud Fraction718

Among the checks that modeling centers are expected to perform to ensure proper im-719

plementation of the ISCCP simulator is to verify that the total cloud fraction computed by720

summing the CTP -τ histogram is the same as the total cloud fraction diagnostic computed721

by the GCM cloud scheme. We have performed this check and found RMS differences be-722

tween the two fields are 8% in the ipsl cm4 model, 4% in the ncar ccsm3 0 model, and less723

than 2% in the ukmo hadsm4, ukmo hadsm3, ukmo hadgsm1, uiuc, and cccma agcm4 0724

models.725

In two models (bmrc1 and miroc hisens), the total cloud fraction diagnostic is not726

reported, so no comparison could be made. Since the cloud feedbacks computed for these two727

models also cannot be “ground-truthed” against the adjusted change in cloud forcing method,728

we cannot verify that the simulator is implemented properly in these models. However, in729

an effort to keep a reasonably-sized ensemble of models in our analysis, we take on faith that730

they have properly implemented the simulator. It is somewhat reassuring that their cloud731

fraction histograms are not anomalous relative to the ensemble mean (once the correction732
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described below is made for the miroc hisens model).733

We found that the CTP -τ histogram for the gfdl mlm2 1 model archived in the CFMIP1734

database had not been divided by the fraction of radiation time steps with sunlit conditions,735

resulting in a large underestimate of total cloud fraction as well as features resulting from736

sampling only the sunlight points in a given month. Dividing by the fraction of calls to the737

simulator in each month with sunlit conditions (data field provided by R. Hemler) brought738

the total cloud fractions into agreement, with an RMS difference of roughly 1%.739

Total cloud fraction computed by summing the CTP -τ histogram of the miroc losens740

model greatly overestimated the total cloud fraction diagnostic. Both miroc models have an741

anomalously large cloud fraction in the highest, thinnest bin relative to the other models,742

possibly indicating that “trivial” clouds (e.g. clouds having cloud water contents less than743

10−8 kg kg−1 but greater than zero which might result from numerical errors in the advection744

of positive definite and highly inhomogeneous fields) are getting counted as cloud by the745

simulator whereas the total cloud diagnostic in this model would not record a cloud as being746

present. Artificially setting cloud fraction in the highest, thinnest bin to zero brought the two747

estimates of total cloud fraction into agreement, with an RMS difference of roughly 4.5% in748

the miroc losens model that is dominated by differences over Antarctica. Removal of clouds749

in the highest, thinnest bin has a negligible effect on the resultant feedback computed for750

both miroc models because of the relative insensitivity of radiative fluxes to this very thin751

cloud type.752

The 4% RMS difference in the two computations of total cloud fraction in the ncar ccsm3 0753

model does not reflect incorrect simulator implementation, but rather the presence of “empty754

clouds” that are recorded by the model’s cloud amount diagnostic but not by the simulator.755
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Such “clouds” contain no or very little liquid water and are present due to the diagnostic756

cloud fraction being computed separately from the prognostic cloud water in CAM (Hannay757

et al.). In these situations, the simulator is providing the true radiatively-relevant clouds.758

Finally, we have chosen to exclude the mpi echam5 model from our analysis based on two759

considerations. First, the total cloud fraction computed by summing its CTP -τ histogram760

is significantly different from the total cloud fraction diagnostic, with an RMS difference of761

30.5%. The total cloud fraction as computed by summing the histogram is rarely less than762

80% at any location on the planet, resulting in a global mean total cloud fraction of 92% that763

is highly inconsistent with the total cloud fraction diagnostic. Second, the RMS difference764

between this model’s CTP -τ histogram and the ensemble mean histogram is larger than for765

any other model in the ensemble, with values exceeding 10% in several bins. Williams and766

Webb (2009) have also noted that among the ten models they analyzed, the mpi echam5767

model’s histogram has the largest Euclidean distance to ISCCP observations in several cloud768

regimes.769

b. Consistency Between Clouds and Radiation770

Unlike the typical implementation of the ISCCP simulator in which the cloud fields771

reported in the histogram represent those for which the radiative transfer calculations are772

performed, in the cccma agcm4 0 model, the cloud fields reported in the ISCCP simulator773

histogram are different from those used by the model’s radiation code (J. Cole, personal774

communication, 2011). In this model’s radiation calculations, cloud visible optical depths are775

scaled down according to Eq. 12 of Li et al. (2005) to account for subgrid-scale inhomogeneity776
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in the cloud fields that strongly impacts scattering (Li (2000); Li and Barker (2002)). Because777

the ISCCP simulator is called prior to this scaling, the cloud fields reported in the histogram778

do not represent the same clouds as seen by that model’s radiation code. Thus, the GCM-779

produced radiative fluxes are guaranteed to be inconsistent with those computed using the780

cloud radiative kernels applied to ISCCP simulator output because the kernels assume the781

clouds in the histogram are those seen by the radiation. To circumvent this problem, for782

this model only we log-linearly interpolate the values of the cloud radiative kernels from783

the original optical depths of the ISCCP simulator to optical depths that have been scaled784

according to Eq. 12 of Li et al. (2005). Applying this scaling reduced the slope shown in785

Figure 3l from 1.50 to 1.06, significantly improving the agreement between the SW cloud786

feedback calculated with the cloud kernel and that calculated by adjusting the change in787

SWCF .788

This scaling was not applied for LW radiation in the cccma agcm4 0 model. Although the789

code does take into account the effect of horizontal variability in cloud fields on LW radiative790

transfer, it is not a simple modification of the optical thickness since the inhomogeneity791

was developed right into the radiative transfer solution (J. Cole, personal communication,792

2011). Nevertheless, we scale the LW cloud radiative kernel in the same manner as the SW793

radiative kernel. This slightly improved the agreement between the cloud radiative kernel-794

and adjusted change in LW cloud forcing-computed feedbacks, with the slope shown in Figure795

3f decreasing from 1.35 to 1.22.796
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1 Global climate models that took part in the Cloud Feedback Model Intercom-888

parison Project. Asterisks denote models for which profiles of atmospheric889

temperature and specific humidity were not provided. 45890
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Table 1. Global climate models that took part in the Cloud Feedback Model Intercom-
parison Project. Asterisks denote models for which profiles of atmospheric temperature and
specific humidity were not provided.

# Abbreviation Modeling Center Country
1 ukmo hadsm4 Hadley Centre for Climate Prediction and Research /

Met Office
U.K.

2 ukmo hadsm3 Hadley Centre for Climate Prediction and Research /
Met Office

U.K.

3 ukmo hadgsm1 Hadley Centre for Climate Prediction and Research /
Met Office

U.K.

4 uiuc University of Illinois at Urbana-Champaign U.S.A.
5 miroc losens Center for Climate System Research (The University of

Tokyo), National Institute for Environmental Studies,
and Frontier Research Center for Global Change

Japan

6 cccma agcm4 0 Canadian Centre for Climate Modelling and Analysis Canada
7 bmrc1* Bureau of Meteorology Research Centre Australia
8 gfdl mlm2 1* US Dept. of Commerce / NOAA / Geophysical Fluid

Dynamics Laboratory
U.S.A.

9 ipsl cm4* Institut Pierre Simon Laplace France
10 miroc hisens* Center for Climate System Research (The University of

Tokyo), National Institute for Environmental Studies,
and Frontier Research Center for Global Change

Japan

11 mpi echam5* Max Planck Institute for Meteorology Germany
12 ncar ccsm3 0* National Center for Atmospheric Research U.S.A.
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List of Figures891

1 Global and annual mean (a) LW, (b) SW, and (c) net cloud radiative kernels.892

The kernels have been mapped to the control climate’s clear-sky surface albedo893

distribution before averaging in space; thus the average kernels are weighted894

by the actual global distribution of clear-sky surface albedo. 49895

2 Global mean cloud fraction for the (a) 1xCO2 and (b) 2xCO2 runs of the896

ukmo hadsm4, ukmo hadsm3, ukmo hadgsm1, miroc losens, and cccma agcm4 0897

models, along with (c) the difference expressed per unit change in each model’s898

global mean surface temperature between the two states. Histogram result-899

ing from multiplying the change in cloud fraction histogram at each location900

with the (d) LW, (e) SW, and (f) net cloud radiative kernel histogram, then901

taking a global mean. The sum of each histogram is shown in each title. For902

the feedbacks, the estimate computed using the adjusted ∆CRF technique of903

Soden et al. (2008) is also shown in the title. 50904
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3 Point-by-point comparison of (a-f) LW and (g-l) SW cloud feedbacks esti-905

mated from adjusting the change in cloud radiative forcing as in Soden et al.906

(2008) (x-axis) plotted against those estimated using the cloud radiative ker-907

nels developed here (y-axis). Locations in which the magnitude of the change908

in clear-sky surface albedo exceeds the 90th percentile have been removed. The909

thin line is the one-to-one line and the thick line is the linear least-squares910

fit to the data. The slope and 2σ range of uncertainty of this regression line911

along with the fraction of variance explained by the fit are provided in each912

panel. The uncertainty is calculated from a bootstrapping method in which913

the predictand is re-sampled 1000 times to compute a distribution of possible914

regression coefficients. 51915

4 Global mean (a) LW, (b) SW, and (c) net cloud feedbacks for the (1) ukmo hadsm4,916

(2) ukmo hadsm3, (3) ukmo hadgsm1, (4) uiuc, (5) miroc losens, and (6)917

cccma agcm4 0 models estimated using the cloud radiative kernels developed918

here (y-axis) plotted against the estimates from adjusting the change in cloud919

radiative forcing as in Soden et al. (2008) (x-axis). The dashed line is the920

one-to-one line. Note that the x-axis and y-axis limits vary from panel to921

panel, but all span a range of 1 W m−2 K−1. 52922
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5 (left column) Cloud kernel-derived and (middle column) adjusted change in923

cloud forcing-derived estimates of (top) LW, (middle), SW, and (bottom)924

net cloud feedback, along with (right column) the difference between the925

two estimates. The ensemble mean cloud feedback maps are computed only926

for models in which the standard kernel calculation is possible but exclud-927

ing the uiuc model (i.e., the ukmo hadsm4, ukmo hadsm3, ukmo hadgsm1,928

miroc losens, and cccma agcm4 0 models). 53929

6 Zonal mean ensemble mean (a) LW, (b) SW, and (c) net cloud feedbacks930

partitioned into contributions from high, middle, and low clouds. Global931

mean values of each contribution are shown in the legend. The abscissa is932

sine of latitude so that the visual integral is proportional to Watts per Kelvin933

of mean surface temperature change. The ensemble mean refers to all models934

except the uiuc and mpi echam5 models. 54935

7 As in Figure 6, but partitioned into contributions from thin, medium, and936

thick clouds. 55937

8 Global mean (red) LW, (blue) SW, and (black) net cloud feedback estimates938

and the contribution to the cloud feedbacks from high, middle, and low clouds.939

Each model is represented by a dot and the multi-model mean is represented940

by the height of the vertical bar. The uiuc and mpi echam5 models are941

excluded from this figure. 56942

9 As in Figure 8, but partitioned into contributions from thin, medium, and943

thick clouds. 57944
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Fig. 1. Global and annual mean (a) LW, (b) SW, and (c) net cloud radiative kernels. The
kernels have been mapped to the control climate’s clear-sky surface albedo distribution before
averaging in space; thus the average kernels are weighted by the actual global distribution
of clear-sky surface albedo.
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Fig. 2. Global mean cloud fraction for the (a) 1xCO2 and (b) 2xCO2 runs of the
ukmo hadsm4, ukmo hadsm3, ukmo hadgsm1, miroc losens, and cccma agcm4 0 models,
along with (c) the difference expressed per unit change in each model’s global mean surface
temperature between the two states. Histogram resulting from multiplying the change in
cloud fraction histogram at each location with the (d) LW, (e) SW, and (f) net cloud radia-
tive kernel histogram, then taking a global mean. The sum of each histogram is shown in
each title. For the feedbacks, the estimate computed using the adjusted ∆CRF technique of
Soden et al. (2008) is also shown in the title.
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Fig. 3. Point-by-point comparison of (a-f) LW and (g-l) SW cloud feedbacks estimated
from adjusting the change in cloud radiative forcing as in Soden et al. (2008) (x-axis) plotted
against those estimated using the cloud radiative kernels developed here (y-axis). Locations
in which the magnitude of the change in clear-sky surface albedo exceeds the 90th percentile
have been removed. The thin line is the one-to-one line and the thick line is the linear least-
squares fit to the data. The slope and 2σ range of uncertainty of this regression line along
with the fraction of variance explained by the fit are provided in each panel. The uncertainty
is calculated from a bootstrapping method in which the predictand is re-sampled 1000 times
to compute a distribution of possible regression coefficients.
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Fig. 4. Global mean (a) LW, (b) SW, and (c) net cloud feedbacks for the (1) ukmo hadsm4,
(2) ukmo hadsm3, (3) ukmo hadgsm1, (4) uiuc, (5) miroc losens, and (6) cccma agcm4 0

models estimated using the cloud radiative kernels developed here (y-axis) plotted against
the estimates from adjusting the change in cloud radiative forcing as in Soden et al. (2008)
(x-axis). The dashed line is the one-to-one line. Note that the x-axis and y-axis limits vary
from panel to panel, but all span a range of 1 W m−2 K−1.
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(c) Net Cloud Kernel Estimate
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Ensemble Mean Cloud Feedbacks

Fig. 5. (left column) Cloud kernel-derived and (middle column) adjusted change in cloud
forcing-derived estimates of (top) LW, (middle), SW, and (bottom) net cloud feedback,
along with (right column) the difference between the two estimates. The ensemble mean
cloud feedback maps are computed only for models in which the standard kernel calcu-
lation is possible but excluding the uiuc model (i.e., the ukmo hadsm4, ukmo hadsm3,
ukmo hadgsm1, miroc losens, and cccma agcm4 0 models).
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(a) LW Cloud Feedback Components (W m−2 K−1)
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(b) SW Cloud Feedback Components (W m−2 K−1)
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(c) Net Cloud Feedback Components (W m−2 K−1)

 

 

Total: 0.72
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Fig. 6. Zonal mean ensemble mean (a) LW, (b) SW, and (c) net cloud feedbacks partitioned
into contributions from high, middle, and low clouds. Global mean values of each contribu-
tion are shown in the legend. The abscissa is sine of latitude so that the visual integral is
proportional to Watts per Kelvin of mean surface temperature change. The ensemble mean
refers to all models except the uiuc and mpi echam5 models.
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(a) LW Cloud Feedback Components (W m−2 K−1)
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(b) SW Cloud Feedback Components (W m−2 K−1)
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(c) Net Cloud Feedback Components (W m−2 K−1)
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Fig. 7. As in Figure 6, but partitioned into contributions from thin, medium, and thick
clouds.
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Fig. 8. Global mean (red) LW, (blue) SW, and (black) net cloud feedback estimates and
the contribution to the cloud feedbacks from high, middle, and low clouds. Each model is
represented by a dot and the multi-model mean is represented by the height of the vertical
bar. The uiuc and mpi echam5 models are excluded from this figure.
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Fig. 9. As in Figure 8, but partitioned into contributions from thin, medium, and thick
clouds.
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