
The Generic Mapping Tools

Version 4
A Map-Making Tutorial

by

Pål (Paul) Wessel

School of Ocean and Earth Science and Technology
University of Hawai’i at Mānoa

and

Walter H. F. Smith

Laboratory for Satellite Altimetry
NOAA/NESDIS/NODC

October 2004

Generic Mapping Tools Graphics

Contents

INTRODUCTION 1
GMT overview: History, philosophy, and usage . 1

Historical highlights . 1
Philosophy . 1
Why is GMT so popular? . 1
GMT installation considerations . 1

1 SESSION ONE 2
1.1 Tutorial setup . 2
1.2 The GMT environment: What happens when you run GMT? 2

1.2.1 Input data . 2
1.2.2 Job Control . 3
1.2.3 Output data . 3

1.3 The UNIX Environment: Entry Level Knowledge . 4
1.3.1 Redirection . 4
1.3.2 Piping (

�
) . 4

1.3.3 Standard error (stderr) . 4
1.3.4 File name expansion or “wild cards” . 4

1.4 Laboratory Exercises . 5
1.4.1 Linear projection . 5
1.4.2 Logarithmic projection . 5
1.4.3 Mercator projection . 6
1.4.4 Albers projection . 6
1.4.5 Orthographic projection . 7
1.4.6 Eckert IV and VI projection . 7

2 SESSION TWO 8
2.1 General Information . 8

2.1.1 Examples . 10
2.1.2 Exercises . 10
2.1.3 More exercises . 11

2.2 Plotting text strings . 12
2.3 Exercises . 13

3 SESSION THREE 14
3.1 Contouring gridded data sets . 14

3.1.1 Exercises . 14
3.2 Gridding of arbitrarily spaced data . 15

3.2.1 Nearest neighbor gridding . 15
3.2.2 Gridding with Splines in Tension . 16
3.2.3 Preprocessing . 16

3.3 Exercises . 17

4 SESSION FOUR 18
4.1 Cpt files . 18

4.1.1 Exercises . 19
4.2 Illumination and intensities . 19
4.3 Color images . 19

4.3.1 Exercises . 20
4.4 Perspective views . 21

4.4.1 Mesh-plot . 21

ii

CONTENTS iii

4.4.2 Color-coded view . 21

5 References 23

CONTENTS 1

INTRODUCTION

The purpose of this tutorial is to introduce new users to , outline the environment, and enable
you to make several forms of graphics without having to know too much about UNIX and UNIX tools. We
will not be able to cover all aspects of nor will we necessarily cover the selected topics in sufficient
detail. Nevertheless, it is hoped that the exposure will prompt the users to improve their and UNIX
skills after completion of this short tutorial.

GMT overview: History, philosophy, and usage

Historical highlights

The system was initiated in late 1987 at Lamont-Doherty Earth Observatory, Columbia University
by graduate students Paul Wessel and Walter H. F. Smith. Version 1 was officially introduced to Lamont
scientists in July 1988. 1 migrated by word of mouth (and tape) to other institutions in the United
States, UK, Japan, and France and attracted a small following. Paul took a Post-doctoral position at SOEST
in December 1989 and continued the development. Version 2.0 was released with an article in EOS,
October 1991, and quickly spread worldwide. We obtained NSF-funding for version 3.0 in 1993
which was released with another article in EOS on August 15, 1995. Significantly improved versions (3.1-
3.3, 3.3.1–6), 3.4 and 3.4.1–4 were released between November 1998 and January 2004, culminating in the
October 2004 introduction of 4.0 (and service release 3.4.5). now is used by � 6,000 users worldwide
in a broad range of disciplines.

Philosophy

follows the UNIX philosophy in which complex tasks are broken down into smaller and more man-
ageable components. Individual modules are small, easy to maintain, and can be used as any other
UNIX tool. is written in the ANSI C programming language (very portable), is POSIX compliant,
and is independent of hardware constraints (e.g., memory). was deliberately written for command-
line usage, not a windows environment, in order to maximize flexibility. We standardized early on to use
PostScript output instead of other graphics formats. Apart from the built-in support for coastlines,
completely decouples data retrieval from the main programs. uses architecture-independent
file formats.

Why is GMT so popular?

The price is right! Also, offers unlimited flexibility since it can be called from the command line,
inside scripts, and from user programs. has attracted many users because of its high quality PostScript
output. easily installs on almost any computer.

GMT installation considerations

has been installed on machines ranging from super-computers to lap-top PCs. only contains
some 55,000 lines of code and has modest space/memory requirements. Minimum requirements are

� The netCDF library 3.4 or higher (free from www.unidata.edu).

� A C Compiler (free from www.gnu.org).

� About 100 Mb disk space (70 Mb additional for full- and high-resolution coast-lines).

� About 32 Mb memory.

In addition, we recommend access to a PostScript printer or equivalent (e.g., ghostscript), PostScript
previewer (e.g., ghostview), any flavor of the UNIX operating system, and more disk space and memory.

CHAPTER 1. SESSION ONE 2

1. SESSION ONE

1.1 Tutorial setup

1. We assume that has been properly and fully installed and that you have the statement setenv
GMTHOME

�
path to directory � in your .login as described in the README

file.

2. All man pages, documentation, and example scripts are available from the documentation
web page. It is assumed these pages have been installed locally at your site; if not they are always
available from the main GMT home page1.

3. We recommend you create a sub-directory called tutorial, cd into that directory, and copy all the
tutorial files directly there with “cp -r $GMTHOME/tutorial/* . ”.

4. As we discuss principles it may be a good idea to consult the Technical Reference and
Cookbook for more detailed explanations.

5. The tutorial uses the supplemental program grdraster to extract subsets of global gridded
data sets. For your convenience we also supply the subsets in the event you do not wish to install
grdraster and the public data sets it can read. Thus, run the grdraster commands if you have made
the installation or ignore them if you have not.

6. For all but the simplest jobs it is recommended that you place all the (and UNIX) com-
mands in a cshell script file and make it executable. To ensure that UNIX recognizes your script as
a cshell script it is a good habit always to start the script with the line #!/bin/csh. All the examples
in this tutorial assumes you are running the cshell ; if you are using something different then you are
on your own.

7. Making a script executable is accomplished using the chmod command, e.g., the script figure 1.csh
is made executable with “chmod +x figure 1.csh”.

8. To view a PostScript file (e.g., map.ps) on a UNIX workstation we use ghostview map.ps. On some
systems there will be similar commands, like imagetool and pageview on Sun workstations. In this
text we will refer to ghostview; please substitute the relevant PostScript previewer on your system.

9. Please cd into the directory tutorial. We are now ready to start.

1.2 The GMT environment: What happens when you run GMT?

To get a good grasp on one must understand what is going on “under the hood”. Figure 1.1 illustrates
the relationships you need to be aware of at run-time.

1.2.1 Input data

A program may or may not take input files. Three different types of input are recognized (more
details can be found in Appendix B in the Technical Reference):

1. Data tables. These are “spreadsheet” tables with a fixed number of columns and unlimited number
of rows. We distinguish between two groups:

� ASCII (Preferred unless files are huge)

– Single segment [Default]

1http://gmt.soest.hawaii.edu

CHAPTER 1. SESSION ONE 3

INPUT OUTPUT

ASCII or Binary Table(s)

Gridded Data Set(s)

Color Palette Table (cpt)

Optional

Required

PostScript Plot File

ASCII or Binary Table(s)

Gridded Data Set(s)

Statistics & Summaries

Exit Status

Warnings & Errors

GMT
Application

Program Defaults

JOB CONTROL

Previous Command
Line Options

Command Line Options

Support Data
(Hidden)

GMT Defaults

Figure 1.1: The GMT run-time environment.

– Multi-segment with internal header records (–M)
� Binary (to speed up input/output)

– Single segment [Default]

– Multi-segment (segment headers are all NaN fields) (–M)

2. Gridded dated sets. These are data matrices (evenly spaced in two coordinates) that come in two
flavors:

� Grid-line registration
� Pixel registration

You may choose among several file formats (even define your own format), but the default is
the architecture-indenpendent netCDF format.

3. Color palette table (For imaging, color plots, and contour maps). We will discuss these later.

1.2.2 Job Control

programs may get operational parameters from several places:

1. Supplied command line options/switches or program defaults.

2. Short-hand notation to select previously used option arguments (stored in .gmtcommands4).

3. Implicitly using defaults for a variety of parameters (stored in .gmtdefaults4).

4. May use hidden support data like coastlines or PostScript patterns.

1.2.3 Output data

There are 6 general categories of output produced by :

1. PostScript plot commands.

2. Data Table(s).

3. Gridded data set(s).

4. Statistics & Summaries.

CHAPTER 1. SESSION ONE 4

5. Warnings and Errors, written to stderr.

6. Exit status (0 means success, otherwise failure).

Note: automatically creates and updates a history of past command options for the common
switches. This history file is called .gmtcommands and one will be created in every directory from which

programs are executed. Many initial problems with usage result from not fully appreciating
the relationships shown in Figure 1.1.

1.3 The UNIX Environment: Entry Level Knowledge

1.3.1 Redirection

Most programs read their input from the terminal (called stdin) or from files, and write their output
to the terminal (called stdout). To use files instead one can use UNIX redirection:

GMTprogram input-file >! output-file
GMTprogram < input-file >! output-file
GMTprogram input-file >> output-file # Append to existing file

The exclamation sign (!) allows us to overwrite existing files.

1.3.2 Piping (
�
)

Sometimes we want to use the output from one program as input to another program. This is achieved with
UNIX pipes:

Someprogram | GMTprogram1 | GMTprogram2 >! Output-file (or | lp)

1.3.3 Standard error (stderr)

Most UNIX and programs will on occasion write error messages. These are typically written to a
separate data stream called stderr and can be redirected separately from the standard output (which goes to
stdout). To redirect error messages we use

UNIXprogram >& errors.log

When we want to save both program output and error messages to separate files we use the following
syntax:

(GMTprogram > output.d) >& errors.log

1.3.4 File name expansion or “wild cards”

UNIX provides several ways to select groups of files based on name patterns (Table 1.1):

Code Meaning
* Matches anything
? Matches any single character
[list] Matches characters in the list
[range] Matches characters in the given range

Table 1.1: UNIX wildcards.

You can save much time by getting into the habit of selecting “good” filenames that make it easy to select
subsets of all files using the UNIX wild card notation.

CHAPTER 1. SESSION ONE 5

Examples
� GMTprogram data *.d operates on all files starting with “data ” and ending in “.d”.

� GMTprogram line ?.d works on all files starting with “line ” followed by any single character and
ending in “.d”.

� GMTprogram section 1[0-9]0.part [12] only processes data from sections 100 through 190, only
using every 10th profile, and gets both part 1 and 2.

1.4 Laboratory Exercises

We will begin our adventure by making some simple plot axes and coastline basemaps. We will do this
in order to introduce the all-important –B, –J, and –R switches and to familiarize ourselves with a few
selected projections. The programs we will utilize are psbasemap and pscoast. Please
consult their manual pages on the web site for reference.

1.4.1 Linear projection

We start by making the basemap frame for a linear x-y plot. We want it to go from 10 to 70 in x, annotating
every 10, and from -3 to 8 in y, annotating every 1. The final plot should be 4 by 3 inches in size. Here’s
how we do it:

psbasemap -R10/70/-3/8 -JX4i/3i -B10/1:."My first plot": -P >! plot.ps

You can view the result with ghostview plot.ps.

Exercises

1. Try change the –JX values.

2. Try change the –B values.

3. Omit the –P.

1.4.2 Logarithmic projection

We next will show how to do a basemap for a log–log plot. We will assume that the raw x data range from
3 to 9613 and y ranges from 3 � 2 � 1020 to 6 � 8 � 1024. One possibility is

psbasemap -R1/10000/1e20/1e25 -JX9il/6il \
-B2:"Wavelength (m)":/a1pf3:"Power (W)":WS >! plot.ps

(The backslash
�

makes UNIX ignore the carriage return that follows and treat the two lines as one long
command).

Exercises

1. Do not append l to the axes lengths.

2. Leave the p modifier out of the –B string.

3. Add g3 to each side of the slash in –B.

CHAPTER 1. SESSION ONE 6

1.4.3 Mercator projection

Despite the problems of extreme horizontal exaggeration at high latitudes, the conformal Mercator pro-
jection (–JM) remains the stalwart of location maps used by scientists. It is one of several cylindrical
projections offered by ; here we will only have time to focus on one such projection. The complete
syntax is simply

–JMwidth

To make coastline maps we use pscoast which automatically will access the coastline data base
derived from the GSHHS database2. In addition to the common switches we may need to use some of
several pscoast -specific options (see Table 1.2).

Option Purpose
–A Exclude small features or those of high hierarchical levels (see Appendix K)
–D Select data resolution (full, high, intermediate, low, or crude)
–G Set color of dry areas (default does not paint)
–I Draw rivers (chose features from one or more hierarchical categories)
–L Plot map scale (length scale can be km, miles, or nautical miles)
–N Draw political borders (including US state borders)
–S Set color for wet areas (default does not paint)
–W Draw coastlines and set pen thickness

Table 1.2: Main options when making coastline plots or overlays.

One of –W, –G, –S must be selected. Our first coastline example is from Latin America:

pscoast -R-90/-70/0/20 -JM6i -P -B5g5 -G180/120/60 >! map.ps

Exercises

1. Add the –V option.

2. Try –R270/290/0/20 instead. What happens to the annotations?

3. Edit your .gmtdefaults4 file, change PLOT DEGREE FORMAT to another setting (see the gmt-
defaults man page), and plot again.

4. Pick another region and change land color.

5. Pick a region that includes the north or south poles.

6. Try –W0.25p instead of (or in addition to) –G.

1.4.4 Albers projection

The Albers projection (–JB) is an equal-area conical projection; its conformal cousin is the Lambert conic
projection (–JL). Their usages are almost identical so we will only use the Albers here. The general syntax
is

–JBlon0 � lat0 � lat1 � lat2 � width

where (lon0 � lat0) is the map (projection) center and lat1 � lat2 are the two standard parallels where the cone
intersects the Earth’s surface. We try the following command:

pscoast -R-130/-70/24/52 -JB-100/35/33/45/6i -B10g5:."Conic Projection": \
-N1/2p -N2/0.25p -A500 -G200 -W0.25p -P >! map.ps

2See Wessel and Smith [1996].

CHAPTER 1. SESSION ONE 7

Exercises

1. Change the parameter GRID CROSS SIZE PRIMARY to make grid crosses instead of gridlines.

2. Change –R to a rectangular box specification instead of minimum and maximum values.

1.4.5 Orthographic projection

The azimuthal orthographic projection (–JG) is one of several projections with similar syntax and behavior;
the one we have chosen mimics viewing the Earth from space at an infinite distance; it is neither conformal
nor equal-area. The syntax for this projection is

–JGlon0 � lat0 � width

where (lon0 � lat0) is the center of the map (projection). As an example we will try

pscoast -R0/360/-90/90 -JG280/30/6i -Bg30/g15 -Dc -A5000 -G255/255/255 \
-S150/50/150 -P >! map.ps

Exercises

1. Use the rectangular option in –R to make a rectangular map showing the US only.

1.4.6 Eckert IV and VI projection

We conclude the survey of map projections with the Eckert IV and VI projections (–JK), two of several
projections used for global thematic maps; They are both equal-area projections whose syntax is

–JK[f
�
s]lon0 � width

where f gives Eckert IV (4) and s (Default) gives Eckert VI (6). The lon0 is the central meridian (which
takes precedence over the mid-value implied by the –R setting). A simple Eckert VI world map is thus
generated by

pscoast -R0/360/-90/90 -JKs180/9i -B60g30/30g15 -Dc -A5000 -G180/120/60 \
-S100/180/255 -W0.25p >! map.ps

Exercises

1. Center the map on Greenwich.

2. Add a map scale with –L.

CHAPTER 2. SESSION TWO 8

2. SESSION TWO

2.1 General Information

There are 18 programs that directly create (or add overlays to) plots (Table 2.1); the remaining 45 are
mostly concerned with data processing. This session will focus on the task of plotting lines, symbols, and
text on maps. We will build on the skills we acquired while familiarizing ourselves with the various
map projections as well as how to select a data domain and boundary annotations.

Program Purpose
BASEMAPS

psbasemap Create an empty basemap frame with optional scale
pscoast Plot coastlines, filled continents, rivers, and political borders
pslegend Create legend overlay

POINTS AND LINES
pswiggle Draw spatial time-series along their � x � y � -tracks
psxy Plot symbols, polygons, and lines in 2-D
psxyz Plot symbols, polygons, and lines in 3-D

HISTOGRAMS
pshistogram Plot a rectangular histogram
psrose Plot a polar histogram(sector/rose diagram)

CONTOURS
grdcontour Contouring of 2-D gridded data sets
pscontour Direct contouring or imaging of xyz data by optimal triangulation

SURFACES
grdimage Produce color images from 2-D gridded data
grdvector Plot vector fields from 2-D gridded data
grdview 3-D perspective imaging of 2-D gridded data

UTILITIES
psclip Use polygon files to initiate custom clipping paths
psimage Plot Sun rasterfiles
psmask Create clipping paths or generate overlay to mask
psscale Plot grayscale or colorscale bar
pstext Plot textstrings on maps

Table 2.1: List of all 1-D and 2-D plotting programs in GMT.

Plotting lines and symbols, psxy is one of the most frequently used programs in . In addition
to the common command line switches it has numerous specific options, and expects different file formats
depending on what action has been selected. These circumstances make psxy harder to master than most

tools. Table 2.2 shows a complete list of the options.

Option Purpose
–A Suppress line interpolation along great circles
–Ccpt Let symbol color be determined from z-values and the cpt file
–E[x � X][y � Y][cap][/pen] Draw selected error bars with specified attributes
–Gfill Set color for symbol or fill for polygons
–L Explicitly close polygons
–M[flag] Multiple segment input data; headers start with flag
–N Do Not clip symbols at map borders
–S[symbol][size] Select one of several symbols (See Table 2.3)
–Wpen Set pen for line or symbol outline

Table 2.2: Optional switches in the psxy program.

CHAPTER 2. SESSION TWO 9

The symbols can either be transparent (using –W only, not –G) or solid (–G, with optional outline using
–W). The –S option takes the code for the desired symbol and optional size information. If no symbol is
given it is expected to be given in the last column of each record in the input file. The size is optional since
individual sizes for symbols may also be provided by the input data. The main symbols available to us are
shown in Table 2.3.

Option Symbol
–S-size horizontal dash; size is length of dash
–Sasize star; size is radius of circumscribing circle
–Sbsize[/base][u] bar; size is bar width, append u if size is in x-units

Bar extends from base [0] to the y-value
–Scsize circle; size is the diameter
–Sdsize diamond; size is its side
–Se ellipse; direction (CCW from horizontal), major, and minor axes in inches

are read from the input file
–SE ellipse; azimuth (CW from vertical), major, and minor axes in kilometers

are read from the input file
–Sgsize octagon; size is its side
–Shsize hexagon; size is its side
–Sisize inverted triangle; size is its side
–Sksymbol/size kustom symbol; size is its side
–Slsize/string[%font] letter; size is fontsize. Append a letter or text string, and optionally a font
–Snsize pentagon; size is its side
–Sp point; no size needed (1 pixel at current resolution is used)
–Srsize rect, width and height are read from input file
–Sssize square, size is its side
–Stsize triangle; size is its side
–Sv[thick/length/width][nnorm] vector; direction (CCW from horizontal) and length are read from input data

Optionally, append the thickness of the vector and the width and length of the
arrow-head. If the nnorm is appended, all vectors whose lengths are less than
norm will have their attributes scaled by length/norm

–SV[thick/length/width][nnorm] vector, except azimuth (degrees east of north) is expected instead of direction
The angle on the map is calculated based on the chosen map projection

–Sw[size pie wedge; start and stop directions (CCW from horizontal) are read from input data
–Sxsize cross; size is length of crossing lines
–Sysize vertical dash; size is length of dash

Table 2.3: The symbol option in psxy. Lower case symbols (a, c, d, g, h, i, n, s, t, x) will fit inside a circle
of given diameter. Upper case symbols (A, C, D, G, H, I, N, S, T, X) will have area equal to that of a circle
of given diameter.

Because some symbols require more input data than others, and because the size of symbols as well as
their color can be determined from the input data, the format of data can be confusing. The general format
for the input data is (optional items are in brackets []):

x y [z] [size] [σx] [σy] [symbol]

Thus, the only required input columns are the first two which must contain the longitude and latitude
(or x and y). The remaining items apply when one (or more) of the following conditions are met:

1. If you want the color of each symbol to be determined individually, supply a cptfile with the –C
option and let the 3rd data column contain the z-values to be used with the cptfile.

2. If you want the size of each symbol to be determined individually, append the size in a separate
column.

3. To draw error bars, use the –E option and give one or two additional data columns with the � dx and

CHAPTER 2. SESSION TWO 10

� dy values; the form of –E determines if one (–Ex or –Ey) or two (–Exy) columns are needed. If
upper case flags X or Y are given then we will instead draw a “box-and-whisker” symbol and the
σx (or σy) must represent 4 columns containing the minimum, the 25 and 75% quartiles, and the
maximum value. The given x (or y) coordinate is taken as the 50% quartile (median).

4. If you draw vectors with –Sv (or –SV) then size is actually two columns containing the direction (or
azimuth) and length of each vector.

5. If you draw ellipses (–Se) then size is actually three columns containing the direction and the major
and minor axes in plot units (with –SE we expect azimuth instead and axes lengths in km).

Before we try some examples we need to review two key switches; they specify pen attributes and
symbol or polygon fill. Please consult Chapter 4 in the Technical Reference and Cookbook before
experimenting with the examples below.

2.1.1 Examples

We will start off using the file data in your directory. Using the utility minmax we find the extent of
the data region:

minmax data

which returns

data: N = 7 <1/5> <1/5>

telling us that the file data has 7 records and gives the minimum and maximum values for the first two
columns. Given our knowledge of how to set up linear projections with –R and –JX, try the following:

1. Plot the data as transparent circles of size 0.3 inches.

2. Plot the data as solid white circles instead.

3. Plot the data using 0.5” stars, making them red with a thick (width = 1.5p), dashed pen.

To simply plot the data as a line we choose no symbol and specify a pen thickness instead:

psxy data -R -JX -P -B -W0.5p >! plot.ps

2.1.2 Exercises

1. Plot the data as a green-blue polygon instead.

2. Try using a predefined pattern.

A common question is : “How can I plot symbols connected by a line with psxy?”. The surprising
answer is that we must call psxy twice. While this sounds cumbersome there is a reason for this: Basically,
polygons need to be kept in memory since they may need to be clipped, hence computer memory places a
limit on how large polygons we may plot. Symbols, on the other hand, can be plotted one at the time so
there is no limit to how many symbols one may plot. Therefore, to connect symbols with a line we must
use the overlay approach:

psxy data -R -JX -B -P -K -W0.5p >! plot.ps
psxy data -R -JX -O -W -Si0.2i >> plot.ps

CHAPTER 2. SESSION TWO 11

Our final psxy example involves a more complicated scenario in which we want to plot the epicenters
of several earthquakes over the background of a coastline basemap. We want the symbols to have a size
that reflects the magnitude of the earthquakes, and that their color should reflect the depth of the hypocen-
ter. You will find the two files quakes.ngdc and quakes.cpt in your directory. The first few lines in the
quakes.ngdc looks like this:

Historical Tsunami Earthquakes from the NGDC Database
Year Mo Da Lat+N Long+E Dep Mag
1987 01 04 49.77 149.29 489 4.1
1987 01 09 39.90 141.68 067 6.8

Thus the file has three header records (including the blank line), but we are only interested in columns
5, 4, 6, and 7. In addition to extract those columns we must also scale the magnitudes into symbols sizes
in inches. Given their range it looks like multiplying the magnitude by 0.02 will work well. Reformatting
this file to comply with the psxy input format can be done in a number of ways, including manual editing,
using MATLAB, a spreadsheet program, or UNIX tools. Here, without further elaboration, we simply use
the UNIX tool awk to do the job ($5 refers to the 5’th column etc., and NR is the current record number):

awk ’{if (NR > 3) print $5, $4, $6, 0.02*$7}’ quakes.ngdc >! quakes.d

The awk statement is automatically applied to each record, hence the output file quakes.d should now
look like this (try it!):

149.29 49.77 489 0.082
141.68 39.90 067 0.136
...etc etc

We will follow conventional color schemes for seismicity and assign red to shallow quakes (depth 0–
100 km), green to intermediate quakes (100–300 km), and blue to deep earthquakes (depth � 300 km). The
quakes.cpt file establishes the relationship between depth and color:

color palette for seismicity
#z0 red green blue z1 red green blue
0 255 0 0 100 255 0 0
100 0 255 0 300 0 255 0
300 0 0 255 1000 0 0 255

Apart from comment lines (starting with #), each record in the cpt file governs the color of a symbol
whose z value falls in the range between z0 and z1. If the lower and upper red/green/blue triplets differ then
an intermediate color will be linearly interpolated given the z value. Here, we have chosen constant color
intervals.

We may now complete our example using the Mercator projection; we throw in a map scale out of pure
generosity:

pscoast -R130/150/35/50 -JM6i -B5 -P -G200 -Lf134/49/42.5/500 -K >! map.ps
psxy -R -JM -O -Cquakes.cpt quakes.d -Sci -W0.25p >> map.ps

where the i appended to the –Sc option ensures that symbols sizes are interpreted to be in inches.

2.1.3 More exercises

1. Select another symbol.

2. Let the deep earthquakes be cyan instead of blue.

CHAPTER 2. SESSION TWO 12

2.2 Plotting text strings

In many situations we need to annotate plots or maps with text strings; in this is done using pstext.
Apart from the common switches, there are 7 options that are particularly useful (Table 2.4).

Option Purpose
–Cdx/dy Spacing between text and the text box (see –W)
–Ddx/dy Offsets the projected location of the strings
–Gfill Sets the color of the text
–L Lists the font ids and exits
–N Deactivates clipping at the borders
–Spen Selects outline font and sets pen attributes
–W[fill][o[pen]] Paint the text box; draw the outline if o is appended (also see –C)

Table 2.4: Some of the most frequently used options in pstext.

My TextMy Text
∆y ∆x

Figure 2.1: Relationship between the text box and the extra clearance.

The input data to pstext is expected to contain the following information:

x y size angle fontno justify text

The size argument is the font size in points, the angle is the angle (measured counterclockwise) between
the text’s baseline and the horizontal, justify indicates which point on the text-string should correspond to
the given x, y location, and text is the text string or sentence to plot. Figure 2.2 illustrates these concepts
and shows the relevant two-character codes used for justification.

My Text
L (Left) C (Center) R (Right)

T (Top)

M (Middle)

B (Bottom)

LM TR

Figure 2.2: Justification (and corresponding character codes) for text strings.

The text string can be one or several words and may include octal codes for special characters and
escape-sequences used to select subscripts or symbol fonts. The escape sequences that are recognized by

are given in Table 2.5.
Note that these escape sequences (as well as octal codes) can be used anywhere in including

in arguments to the –B option. A chart of octal codes can be found in Appendix F in the technical
reference book. For accented European characters you must set CHAR ENCODING to ISOLatin1 in
your .gmtdefaults4 file.

We will demonstrate pstext with the following script:

cat << EOF | pstext -R0/7/0/5 -Jx1i -P -B1g1 -G255/128/0 | ghostview -
1 1 30 0 4 BL It’s P@al, not Pal!
1 2 30 0 4 BL Try @%33%ZapfChancery@%% today
1 3 30 0 4 BL @˜D@˜g@-b@- = 2@˜pr@˜G@˜D@˜h.
1 4 30 0 4 BL University of Hawaii at M@!a\225noa
EOF

CHAPTER 2. SESSION TWO 13

Code Effect
@˜ Turns symbol font on or off
@%fontno% Switches to another font; @%% resets to previous font
@+ Turns superscript on or off
@- Turns subscript on or off
@# Turns small caps on or off
@! Creates one composite character of the next two characters
@@ Prints the @ sign itself
@E @e Æ æ
@O @o Ø ø
@A @a Å å

Table 2.5: GMT text escape sequences.

Here we have used the “here document” notation in UNIX: The � � EOF will treat the following lines
as the input file until it detects the word EOF. We pipe the PostScript directly through ghostview (the –
tells ghostview that piping is happening).

2.3 Exercises

1. At y � 5, add the sentence “z2 � x2 � y2”.

2. At y � 6, add the sentence “It is 80 � today”.

CHAPTER 3. SESSION THREE 14

3. SESSION THREE

3.1 Contouring gridded data sets

comes with several utilities that can create gridded data sets; we will discuss two such programs
later this session. First, we will assume that we already have gridded data sets. In the supplemental
archive there is a program that serves as a data extractor from several public domain global gridded data
sets. Among these data are ETOPO5, crustal ages, gravity and geoid, and DEM for the continental US.
Here, we will use grdraster to extract a -ready grid that we will next use for contouring:

grdraster 1 -R-66/-60/30/35 -Gbermuda.grd -V

We first use the program grdinfo to see what’s in this file:

grdinfo bermuda.grd

The file contains bathymetry for the Bermuda region and has depth values from -5475 to -89 meters. We
want to make a contour map of this data; this is a job for grdcontour. As with previous plot commands
we need to set up the map projection with –J. Here, however, we do not have to specify the region since
that is by default assumed to be the extent of the grid file. To generate any plot we will in addition need to
supply information about which contours to draw. Unfortunately, grdcontour is a complicated program
with too many options. We put a positive spin on this situation by touting its flexibility. Here are the most
useful options:

Option Purpose
–Aannot int Annotation interval
–Ccont int Contour interval
–Ggap Sets distance between contour annotations
–Llow/high Only draw contours within the low to high range
–Nunit Append unit to contour annotations
–Qcut Do not draw contours with fewer than cut points
–Ssmooth Resample contours every x inc/smooth increment
–T[+ � -][gap/length][:LH] Draw tick-marks in downhill direction for innermost closed contours

Add tick spacing and length, and characters to plot at the center of closed contours.
–W[a � c]pen Set contour and annotation pens
–Zfactor[/offset] [Subtract offset] and multiply data by factor prior to processing

Table 3.1: The most useful options in grdcontour.

We will first make a plain contour map using 1 km as annotation interval and 250 m as contour interval.
We choose a 7-inch-wide Mercator plot and annotate the borders every 2 � :

grdcontour bermuda.grd -JM7i -C250 -A1000 -P -B2 | ghostview -

3.1.1 Exercises

1. Add smoothing with –S4.

2. Try tick all highs and lows with –T.

3. Skip small features with –Q10.

4. Override region using –R-70/-60/25/35.

5. Try another region that clips our data domain.

6. Scale data to km and use the km unit in the annotations.

CHAPTER 3. SESSION THREE 15

3.2 Gridding of arbitrarily spaced data

Except in the situation above when a gridded file is available, we must convert our data to the right format
readable by before we can make contour plots and color-coded images. We distinguish between two
scenarios:

1. The (x, y, z) data are available on a regular lattice grid.

2. The (x, y, z) data are distributed unevenly in the plane.

The former situation may require a simple reformatting (using xyz2grd), while the latter must be inter-
polated onto a regular lattice; this process is known as gridding. supports three different approaches
to gridding; here, we will briefly discuss the two most common techniques.

All gridding programs have in common the requirement that the user must specify the grid do-
main and output filename:

–Rxmin/xmax/ymin/ymax The desired grid extent
–Ixinc[m

�
c][/yinc[m

�
c]] The grid spacing (append m or c for minutes or seconds of arc)

–Ggridfile The output grid filename

3.2.1 Nearest neighbor gridding

R

ri

Figure 3.1: Search geometry for nearneighbor.

The program nearneighbor implements a simple “nearest neighbor” averaging operation. It is
the preferred way to grid data when the data density is high. nearneighbor is a local procedure which
means it will only consider the control data that is close to the desired output grid node. Only data points
inside a specified search radius will be used, and we may also impose the condition that each of the n
sectors must have at least one data point in order to assign the nodal value. The nodal value is computed as
a weighted average of the nearest data point per sector inside the search radius, with each point weighted
according to its distance from the node as follows:

z̄ �
∑n

i � 1 ziwi

∑n
i � 1 wi

wi �

�
1 � 9r2

i

R2 ��� 1

The most important switches are listed in Table 3.2.
We will grid the data in the file ship.xyz which contains ship observations of bathymetry off Baja

California. We desire to make a 5’ by 5’ grid. Running minmax on the file yields

ship.xyz: N = 82970 <245/254.705><20/29.99131><-7708/-9>

so we choose the region accordingly:

CHAPTER 3. SESSION THREE 16

Option Purpose
–Sradius[k] Sets search radius. Append k to indicate radius in kilometers [Default is x-units]
–Eempty Assign this value to unconstrained nodes [Default is NaN]
–Nsectors Sector search, indicate number of sectors [Default is 4]
–W Read relative weights from the 4th column of input data

Table 3.2: Switches used with the nearneighbor program.

nearneighbor -R245/255/20/30 -I5m -S40k -Gship.grd -V ship.xyz

We may get a view of the contour map using

grdcontour ship.grd -JM6i -P -B2 -C250 -A1000 | ghostview -

Exercises

1. Try using a 100 km search radius and a 10 minute grid spacing.

3.2.2 Gridding with Splines in Tension

As an alternative, we may use a global procedure to grid our data. This approach, implemented in the
program surface, represents an improvement over standard minimum curvature algorithms by allowing
users to introduce some tension into the surface. Physically, we are trying to force a thin elastic plate
to go through all our data points; the values of this surface at the grid points become the gridded data.
Mathematically, we want to find the function z � x � y � that satisfies the following constraints:

z � xk � yk � � zk � for all data � xk � yk � zk � � k � 1 � n
� 1 � t � ∇4z � t∇2z � 0 elsewhere

where t is the “tension”, 0 � t � 1. Basically, as t � 0 we obtain the minimum curvature solution, while
as t � ∞ we go towards a harmonic solution (which is linear in cross-section). The theory behind all this
is quite involved and we do not have the time to explain it all here, please see Smith and Wessel [1990] for
details. Some of the most important switches for this program are indicated in Table 3.31.

Option Purpose
–Aaspect Sets aspect ratio for anisotropic grids.
–Climit Sets convergence limit. Default is 1/1000 of data range.
–Ttension Sets the tension [Default is 0]

Table 3.3: Some of the options in surface.

3.2.3 Preprocessing

The surface program assumes that the data have been preprocessed to eliminate aliasing, hence we must
ensure that this step is completed prior to gridding. comes with three preprocessors, called block-
mean, blockmedian, and blockmode. The first averages values inside the grid-spacing boxes, the
second returns median values, wile the latter returns modal values. As a rule of thumb, we use means for
most smooth data (such as potential fields) and medians (or modes) for rough, non-Gaussian data (such as
topography). In addition to the required –R and –I switches, these preprocessors all take the same options
(listed in Table 3.4).

With respect to our ship data we preprocess it using the median method:

1The –A option is necessary for geographic grids since x inc shrinks with latitude. Rule of thumb: set aspect = cosine of the
average latitude.

CHAPTER 3. SESSION THREE 17

Option Purpose
–N Choose pixel registration [Default is gridline]
–W[i � o] Append i or o to read or write weights in the 4th column

Table 3.4: Some of the preprocessing options.

blockmedian -R245/255/20/30 -I5m -V ship.xyz >! ship_5m.xyz

The output data can now be used with surface:

surface ship_5m.xyz -R245/255/20/30 -I5m -Gship.grd -V

If you rerun grdcontour on the new grid file (try it!) you will notice a big difference compared to the
grid made by nearneighbor: since surface is a global method it will evaluate the solution at all nodes,
even if there are no data constraints. There are numerous options available to us at this point:

1. We can reset all nodes too far from a data constraint to the NaN value.

2. We can pour white paint over those regions where contours are unreliable.

3. We can plot the landmass which will cover most (but not all) of the unconstrained areas.

4. We can set up a clip path so that only the contours in the constrained region will show.

Here we have only time to explore the latter approach. The psmask program can read the same
preprocessed data and set up a contour mask based on the data distribution. Once the clip path is activated
we can contour the final grid; we finally deactivate the clipping with a second call to psmask. Here’s the
recipe:

psmask -R245/255/20/30 -I5m ship_5m.xyz -JM6i -B2 -P -K -V >! map.ps
grdcontour ship.grd -JM -O -K -C250 -A1000 >> map.ps
psmask -C -O >> map.ps

3.3 Exercises

1. Add the continents using any color you want.

2. Color the clip path light gray (use –G in the first psmask call).

CHAPTER 4. SESSION FOUR 18

4. SESSION FOUR

In our final session we will concentrate on color images and perspective views of gridded data sets. Before
we start that discussion we need to cover two important aspects of plotting that must be understood. These
are

1. Color tables and pseudo-colors in .

2. Artificial illumination and how it affects colors.

4.1 Cpt files

The cpt file is discussed in detail in the Technical Reference and COokbook, Chapter 4. Please
review the format before experimenting further.

Cpt files can be created in any number of ways. provides two mechanisms:

1. Create simple, linear color tables given a master color table (several are built-in) and the desired
z-values at color boundaries (makecpt)

2. Create color tables based on a master cpt color table and the histogram-equalized distribution of
z-values in a gridded data file (grd2cpt)

One can also make these files manually or with awk or other tools. Here we will limit our discussion to
makecpt. Its main argument is the name of the master color table (a list is shown if you run the program
with no arguments) and the equidistant z-values to go with it. The main options are given below.

Option Purpose
–C Set the name of the master cpt file to use
–I Reverse the sense of the color progression
–V Run in verbose mode
–Z Make a continuous rather than discrete table

Table 4.1: Prime options available in makecpt.

To make discrete and continuous color cpt files for data that ranges from -20 to 60, with color changes
at every 10, try these two variants:

makecpt -Crainbow -T-20/60/10 >! disc.cpt
makecpt -Crainbow -T-20/60/10 -Z >! cont.cpt

We can plot these color tables with psscale; the options worth mentioning here are listed in Table 4.2.
In addition, the –B option can be used to set the title and unit label (and optionally to set the annotation-,
tick-, and grid-line intervals for the colorbars.)

Option Purpose
–Ccptfile The required cpt file
–Dxpos/ypos/length/width[h] Sets the position of the center/left and dimensions of scale bar.

Append h to get horizontal bar and give center/top instead
–Imax intensity Add illumination effects

Table 4.2: The main switches and options in psscale.

psbasemap -R0/8.5/0/11 -Jx1i -P -B0 -K >! bar.ps
psscale -D3i/3i/4i/0.5ih -Cdisc.cpt -B:discrete: -O -K >> bar.ps
psscale -D3i/5i/4i/0.5ih -Ccont.cpt -B:continuous: -O -K >> bar.ps
psscale -D3i/7i/4i/0.5ih -Cdisc.cpt -B:discrete: -I0.5 -O -K >> bar.ps
psscale -D3i/9i/4i/0.5ih -Ccont.cpt -B:continuous: -I0.5 -O >> bar.ps

CHAPTER 4. SESSION FOUR 19

4.1.1 Exercises

1. Redo the makecpt exercise using the master table hot and redo the bar plot.

2. Try specifying –B10g5.

4.2 Illumination and intensities

allows for artificial illumination and shading. What this means is that we imagine an artificial sun
placed at infinity in some azimuth and elevation position illuminating our surface. The parts of the surface
that slope toward the sun should brighten while those sides facing away should become darker; no shadows
are cast as a result of topographic undulations.

While it is clear that the actual slopes of the surface and the orientation of the sun enter into these
calculations, there is clearly an arbitrary element when the surface is not topographic relief but some other
quantity. For instance, what does the slope toward the sun mean if we are plotting a grid of heat flow
anomalies? While there are many ways to accomplish what we want, offers a relatively simple way:
We may calculate the gradient of the surface in the direction of the sun and normalize these values to fall in
the � 1 range; +1 means maximum sun exposure and -1 means complete shade. Although we will not show
it here, it should be added that treats the intensities as a separate data set. Thus, while these values
are often derived from the relief surface we want to image they could be separately observed quantities
such as back-scatter information.

Colors in are specified in the RGB system used for computer screens; it mixes red, green, and
blue light to achieve other colors. The RGB system is a Cartesian coordinate system and produces a color
cube. For reasons better explained in Appendix I in the Reference book it is difficult to darken and brighten
a color based on its RGB values and an alternative coordinate system is used instead; here we use the HSV
system. If you hold the color cube so that the black and white corners are along a vertical axis, then the
other 6 corners project onto the horizontal plane to form a hexagon; the corners of this hexagon are the
primary colors Red, Yellow, Green, Cyan, Blue, and Magenta. The CMY colors are the complimentary
colors and are used when paints are mixed to produce a new color (this is how printers operate; they also
add pure black (K) to avoid making gray from CMY). In this coordinate system the angle 0–360 � is the hue
(H); the Saturation and Value are harder to explain. Suffice it to say here that we intend to darken any pure
color (on the cube facets) by keeping H fixed and adding black and brighten it by adding white; for interior
points in the cube we will add or remove gray. This operation is efficiently done in the HSV coordinate
system; hence all shading operations involve translating from RGB to HSV, do the illumination
effect, and transform back the modified RGB values.

4.3 Color images

Once a cpt file has been made it is relatively straightforward to generate a color image of a gridded data.
Here, we will extract a subset of the global 30” DEM (data id 9) from USGS:

grdraster 9 -R-108/-103/35/40 -Gus.grd

Using grdinfo we find that the data ranges from � 1000m to � 4300m so we make a cpt file accordingly:

makecpt -Crainbow -T1000/5000/500 -Z >! topo.cpt

Color images are made with grdimage which takes the usual common command options (by default
the –R is taken from the data set) and a cptfile; the main other options are

We want to make a plain color map with a color bar superimposed above the plot. We try

grdimage us.grd -JM6i -P -B2 -Ctopo.cpt -V -K >! topo.ps
psscale -D3i/8.5i/5i/0.25ih -Ctopo.cpt -I0.4 -B/:m: -O >> topo.ps

CHAPTER 4. SESSION FOUR 20

Option Purpose
–Edpi Sets the desired resolution of the image [Default is data resolution]
–Iintenfile Use artificial illumination using intensities from intensfile
–M Force grayshade using the (television) YIQ conversion

Table 4.3: The main options in grdimage.

The plain color map lacks detail and fails to reveal the topographic complexity of this Rocky Mountain
region. What it needs is artificial illumination. We want to simulate shading by a sun source in the east,
hence we derive the required intensities from the gradients of the topography in the N90 � E direction using
grdgradient. Other than the required input and output filenames, the available options are

Option Purpose
–Aazimuth Azimuthal direction for gradients
–M Indicates that this is a geographic grid
–N[t � e][norm[/offset]] Normalize gradients by norm/offset [= 1/0 by default].

Insert t to normalize by the tan �
1 transformation.

Insert e to normalize by the cumulative Laplace distribution.

Table 4.4: The grdgradient options.

Figure 4.1 shows that raw slopes from bathymetry tend to be far from normally distributed (left). By
using the inverse tangent transformation we can ensure a more uniform distribution (right). The inverse tan-
gent transform simply takes the raw slope estimate (the x value at the arrow) and returns the corresponding
inverse tangent value (normalized to fall in the � 1 range; horizontal arrow pointing to the y-value).

0

5

10

15

20

−0.5 0.0 0.5

Raw
slopes

−1

0

1

−4 −2 0 2 4

0

2

4

−0.5 0.0 0.5

tan−1
transformed

Figure 4.1: How the inverse tangent operation works.

Both –Ne and –Nt yield well behaved gradients. Personally, we prefer to use the –Ne option; the value
of norm is subjective and you may experiment somewhat in the 0.5–5 range. For our case we choose

grdgradient us.grd -Ne0.8 -A100 -M -Gus_i.grd

Given the cpt file and the two gridded data sets we can create the shaded relief image:

grdimage us.grd -Ius_i.grd -JM6i -P -B2 -Ctopo.cpt -K >! topo.ps
psscale -D3i/8.5i/5i/0.25ih -Ctopo.cpt -I0.4 -B/:m: -O >> topo.ps

4.3.1 Exercises

1. Force a gray-shade image.

2. Rerun grdgradient with –N1.

CHAPTER 4. SESSION FOUR 21

4.4 Perspective views

Our final undertaking in this tutorial is to examine three-dimensional perspective views. is currently
limited to vantage points at infinity; thus we are unable to do fly-by’s through canyons etc. The
module that produces perspective views of gridded data files is grdview. It can make two kinds of plots:

1. Mesh or wire-frame plot (with or without superimposed contours)

2. Color-coded surface (with optional shading, contours, or draping).

Regardless of plot type, some arguments must be specified; these are

1. relief file; a gridded data set of the surface.

2. –J for the desired map projection.

3. –JZheight for the vertical scaling.

4. –Eazimuth/elevation for vantage point.

In addition, some options may be required:

Option Purpose
–Ccptfile The cptfile is required for color -coded surfaces and for contoured mesh plots
–Gdrape file Assign colors using drape file instead of relief file
–Iintens file File with illumination intensities
–Qm Selects mesh plot
–Qs[m] Surface plot using polygons; append m to show mesh. This option allows for –W
–Qidpi[g] Image by scan-line conversion. Specify dpi; append g to force gray-shade image. –B is disabled.
–Wpen Draw contours on top of surface (except with –Qi)

Table 4.5: The most useful options in grdview.

4.4.1 Mesh-plot

Mesh plots work best on smaller data sets. We again use the small subset of the ETOPO5 data over
Bermuda and make a quick-and-dirty cpt file:

grd2cpt bermuda.grd -Cocean >! bermuda.cpt

A simple mesh plot can therefore be obtained with

grdview bermuda.grd -JM5i -P -JZ2i -E135/30 -B2 -Cbermuda.cpt >! map.ps

Exercises

1. Select another vantage point and vertical height.

4.4.2 Color-coded view

We will make a perspective, color-coded view of the US Rockies from the southeast. This is done using

grdview us.grd -JM6i -E135/35 -Qi50 -Ius_i.grd -Ctopo.cpt -V -B2 \
-JZ0.5i >! view.ps

This plot is pretty crude since we selected 50 dpi but it is fast to render and allows us to try alternate values
for vantage point and scaling. When we settle on the final values we select the appropriate dpi for the final
output device and let it rip.

CHAPTER 4. SESSION FOUR 22

Exercises

1. Choose another vantage point and scaling.

2. Redo grdgradient with another illumination direction and replot.

3. Select a higher dpi, e.g., 200.

CHAPTER 5. REFERENCES 23

5. References

1. Smith, W.H.F., and P. Wessel, Gridding with continous curvature splines in tension, Geophysics, 55,
293–305, 1990.

2. Wessel, P., and W.H.F. Smith, Free software helps map and display data, EOS Trans. AGU, 72, 441,
1991.

3. Wessel, P., and W.H.F. Smith, New version of the Generic Mapping Tools released, EOS Trans.
AGU, 76, 329, 1995.

4. Wessel, P., and W.H.F. Smith, A global, self-consistent, hierarchical, high-resolution shoreline database,
J. Geophys. Res., 101, 8741–8743, 1996.

5. Wessel, P., and W.H.F. Smith, New, improved version of the Generic Mapping Tools released, EOS
Trans. AGU, 79, 579, 1998.

6. Wessel, P., and W.H.F. Smith, The Generic Mapping Tools Technical Reference and Cookbook,
Version 4.0, pp. 132, 2004.

Index

Symbols
.gmtdefaults4 . 3

A
Albers projection –JB . 6
Artifical illumination . 20
awk . 11, 18

B
blockmean . 16
blockmedian . 16
blockmode .16

C
Color

images. .19
tables . 18

Composite characters . 12
Connected symbols . 10
cshell . 2

E
Eckert IV and VI projection –JK7
Ellipses . 10
Error bars . 10
Escape sequences . 12
Examples . 5, 10
Exercises 5–7, 10, 13–14, 16–17, 19–22

G
ghostscript . 1
ghostview . 1, 2, 5, 13

environment . 2
history . 1
input . 2
installation . 1
philosophy . 1
popularity . 1
requirements . 1

gmtdefaults . 6
grd2cpt . 18
grdcontour . 8, 14, 17
grdgradient .20, 22
grdimage . 8, 19, 20
grdinfo . 14, 19
grdraster . 2, 14
grdvector . 8
grdview . 8, 21

H
“here document” . 13

HSV system . 19

I
Illumination, artificial .20
Input files . 2

J
Justification of text . 12

L
Linear projection –JX . 5
Logarithmic projection .5

M
makecpt . 18, 19
Mercator projection –JM .6
Mesh plots . 21
Minimum curcature . 16
minmax .10, 15

N
nearest neighbor . 15
nearneighbor .15–17

O
Orthographic projection –JG 7

P
Perspective views . 21
Piping . 4
Plot

symbols. .9
Projection

Albers . 6
Eckert IV and VI . 7
linear . 5
logarithmic .5
Mercator . 6
orthographic . 7

psbasemap . 5, 8
psclip . 8
pscoast .5, 6, 8
pscontour .8
pshistogram . 8
psimage . 8
pslegend . 8
psmask . 8, 17
psrose . 8
psscale . 8, 18
pstext input format . 12
pstext .8, 12
pswiggle . 8

24

INDEX 25

psxy input format .9
psxy . 8–11
psxyz . 8
Purpose of tutorial . 1

R
Redirection . 4
RGB system . 19
Run-time environment . 2

S
Small caps .12
Special characters . 12
Standard error .4
Subscript . 12
Superscript . 12
surface . 16, 17
Symbol font . 12
Symbols, plot . 9

T
Text justification . 12

U
UNIX

“wild cards” . 4
piping . 4
redirection . 4
stderr . 4

V
Vectors . 10

W
“Wild cards” . 4

X
xyz2grd . 15

