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The GMT Documentation Project

Starting with version 3.2, all documentation was converted from Microsoft Word to LATEX
files. This step was taken for a number of reasons:

1. Having all the documentation source available in ASCII format makes it easier to access by several
developers working on different platforms in different countries.

2. scripts can now be included directly into the text so that the documentation is automatically
up-to-date when scripts are modified.

3. All figures are generated on the fly and included as EPS files which thus are always up-to-date.

4. It is easy to convert the LATEX files to other formats, such as HTML, SGML, PostScript, and PDF.

5. The whole task of assembling the pieces, be it generating figures or extracting text portions from the
master archive under CVS control, is automated by a simple cshell script.

6. Only free software are used to maintain the Documentation.

Please send email to the GMT help list if you find errors or inconsistencies in the documention.
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A Reminder

If you feel it is appropriate, you may consider paying us back by citing our EOS articles on (and
perhaps also our Geophysics article on the program surface) when you publish papers containing
results or illustrations obtained using . The EOS articles on are

� Wessel, P., and W. H. F. Smith, New, improved version of Generic Mapping Tools released, EOS
Trans. Amer. Geophys. U., vol. 79 (47), pp. 579, 1998.

� Wessel, P., and W. H. F. Smith, New version of the Generic Mapping Tools released, EOS Trans.
Amer. Geophys. U., vol. 76 (33), pp. 329, 1995.

� Wessel, P., and W. H. F. Smith, New version of the Generic Mapping Tools released, EOS Trans.
Amer. Geophys. U. electronic supplement, http://www.agu.org/eos elec/95154e.html, 1995.

� Wessel, P., and W. H. F. Smith, Free software helps map and display data, EOS Trans. Amer. Geo-
phys. U., vol. 72 (41), pp. 441, 445-446, 1991.

The article in Geophysics on surface is

� Smith, W. H. F., and P. Wessel, Gridding with continuous curvature splines in tension, Geophysics,
vol. 55 (3), pp. 293-305, 1990.

includes some code supplied by others, in particular the Triangle code used for Delaunay trian-
gulation. Its author, Jonathan Shewchuk, says

“If you use Triangle, and especially if you use it to accomplish real work, I would like very
much to hear from you. A short letter or email (to jrs@cs.cmu.edu) describing how you use
Triangle will mean a lot to me. The more people I know are using this program, the more
easily I can justify spending time on improvements and on the three-dimensional successor to
Triangle, which in turn will benefit you.”

A few users take the time to write us letters, telling us of the difference is making in their
work. We appreciate receiving these letters. On days when we wonder why we ever released we pull
these letters out and read them. Seriously, as financial support for depends on how well we can “sell”
the idea to funding agencies and our superiors, letter-writing is one area where users can affect such
decisions by supporting the project.

xii



Copyright and Caveat Emptor!

Copyright c
�
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The Generic Mapping Tools ( ) is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software Foundation.

The package is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the file COPYING in the directory or the GNU General Public License1 for more details.

Permission is granted to make and distribute verbatim copies of this manual provided that the copyright
notice and these paragraphs are preserved on all copies. The package may be included in a bundled
distribution of software for which a reasonable fee may be charged.

The Generic Mapping Tools ( ) does not come with any warranties, nor is it guaranteed to work
on your computer. The user assumes full responsibility for the use of this system. In particular, the School
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design and maintenance of are NOT responsible for any damage that may follow from correct or
incorrect use of these programs.

1http://www.gnu.org/copyleft/gpl.html
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Typographic conventions

In reading this documentation, the following provides a summary of the typographic conventions used in
this document.

1. User input and or UNIX commands are indicated by using the typewriter type style, e.g.,
chmod +x job03.csh.

2. The names of programs are indicated by the bold, sans serif type style, e.g., we plot text
with pstext.

3. The names of other programs are indicated by the bold, slanted type style, e.g., grep.

4. File names are indicated by the underline type style, e.g., gmt.h.
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CHAPTER 1. PREFACE 1

1. Preface

While has served the map-making and data processing needs of scientists since 19881, the current
global use was heralded by the first official release in EOS Trans. AGU in the fall of 1991. Since then,

has grown to become a standard tool for many users, particularly in the Earth and Ocean Sciences.
Development has at times been rapid, and numerous releases have seen the light of day since the early
versions. For a history of the changes from release to release, see the online Release Announcements and
the file CHANGES in the main directory.

The success of is to a large degree due to the input of the user community. In fact, most of the
capabilities and options in programs originated as user requests. We would like to hear from you
should you have any suggestions for future enhancements and modification. Please send your comments
to the GMT help list.

1.1 What is new in GMT 4?

4 represents a major overhaul of the package, hence the major version number increment. There are
four categories of changes that have been implemented:

Time-series support. can now read and write time-series data where the time coordinates are of the
form dateTclock2. The formats used for date and clock are under the user’s control. Both Gregorian
and ISO calendars are supported. Frame annotation for time-series are now supported via the –B
option; there are many new modifiers reflecting the vast number of ways one may want to annotate
time axes, including support for primary and secondary annotation levels and the day- and month-
names in numerous languages (send us the information we need if your language is not supported).
The capability to handle time (in –R, –J, –B, i/o, and plotting) required considerable changes “under
the hood”, including the introduction of numerous new gmtdefaults parameters to make the time
series support as “generic” as we need it to be.

New Tools. Three new tools have been added:

1. gmt2rgb: Makes red, green, and blue component gridfiles from an image (to be used with new
options for false color imaging or image draping by grdimage or grdview).

2. grdblend: Blends several partially over-lapping grdfiles into one combined grid. Output grid
is written one row at the time so truly enormous grids can be created.

3. pslegend: Designs and plots elaborate legends on maps.

New Program Options. Many programs have received additional options or features that enhances their
usefulness:

� blockmean: New option –Sw will return weight sum while –Sz returns the data sums (i.e., it
duplicates the previous –S option).

� filter1d: New filters –Fl � L � u � U that return extreme (min, max) values.
� gmtconvert: Added new options –F, –A, and –I that simulate UNIX cut , paste, and tail

–r (or tac) capabilities. Option –E reports first and last point per segment only, –L lists the
segment headers only, while –S lists records from segments whose header matches a given text
pattern.

� gmtmath: Added new operators for solving least squares problems (COL, LSQFIT), finding
function roots (ROOTS), and evaluating critical values (CHICRIT, FCRIT, TCRIT, ZCRIT).
We also added some general functions (SINC, LOG2, LRAND) and miscellaneous operations
(FLIPUD, NEQ). The –S option may now take a modifier to select first or last record only.

1Version 1.0 was then informally released at the Lamont-Doherty Earth Observatory.
2Use standard UNIX tools such as awk or perl to reformat files should your date and clock components reside in separate columns.
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� gmtselect: New option –Z to pass or skip based on input z-range.
� grd2cpt: New options –Q for logarithmic scales, –E for equidistant color intervals, –R for

selecting a grid sub-region, and –N to suppress output of B, F, N colors3.
� grd2xyz: New option –W to write a constant weight factor as a 4th output column, and ability

to process several grid files at the same time.
� grdcontour: Expanded the –G option to handle 5 algorithms (4 new) for the placement of

contour labels.
� grdedit: New option –N to replace selected node values given x, y, z data in table form (options

–H, –b, –f, and –: added for file support).
� grdfilter: New geospatial filters –Fl � L � u � U that return extreme (min, max) values.
� grdimage: New option for colormasking (–Q; PostScript Level 3 only), PostScript image in-

terpolation (–E-dpi), and false RGB color image (when given three grids), as well as a modifier
to –T to draw tile outlines.

� grdinfo: New option to create argument for makecpt (–T) and to round-off region boundary
coordinates (–I).

� grdmath: Added new operators for critical values (CHICRIT, FCRIT, TCRIT, ZCRIT),
geospatial analysis (LDIST, PDIST, INSIDE) and for calculating azimuths (CAS, SAZ). We
have also added some general functions (SINC, LOG2, LRAND) and a few grid operations
(FLIPLR, FLIPUD, ROTX, ROTY, NEQ, INRANGE). We may now create multiple output
grids from a single command.

� grdproject: Option to supply false easting/northing or other offsets from the origin(–C).
� grdreformat: Option to suppress header in raw output (–N).
� grdsample: Option to push the bilinear interpolation closer to nodes that are NaN (–Q).
� grdtrack: Options to retrieve nearest node value (–N, no interpolation) and to push the bilinear

interpolation closer to nodes that are NaN (–Q).
� grdview: Colormasking (–Qc, PS Level 3 only), draping of images via red, green, and blue

component grids (–G). Also, drapegrids can have higher resolution than the relief grid, and we
added a modifier to –T to draw tile outlines.

� makecpt: New options –Q for logarithmic scales and –N to suppress output of B, F, N colors.
� mapproject: New options for datum conversions (–T, –E, and –Q), azimuth and back-azimuth

(–A), distance to point (–G) and line (–L)calculations, and optional false easting/northing (–C).
� minmax: Added –Tdz option to produce –T string for makecpt, –E for returning extreme

records, and the –I option was extended to handle any number of columns when –C is used.
� psbasemap: Extended –L to allow alternate label and justification, and added –T for direc-

tional rose ornament or magnetic compass directions.
� pscoast: Extended –L to allow alternate label and justification, and added –T for directional

rose ornament or magnetic compass directions.
� pscontour: Expanded the –G option to handle 5 algorithms (4 new) for the placement of

contour labels.
� psimage: PostScript image interpolation (–W-xlength), and justification option in –C.
� psscale: Options to annotate on opposite side (–A) and to plot back or foreground triangle

only (–E[b � f] ). Also, draw discrete color-key table with centered annotations by appending an
optional gap to the –L option.

� pstext: New option –A should azimuths rather than angles be given,

3Used to color the background, foreground, and Not-a-Number areas.
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� psxy: Line color control (via –C), symbol position offset (with –D), custom symbols access
(with –Sk; use any of the 35 (Appendix N) that come with or design your own), many
new symbols (horizontal and vertical dashes, pentagon, octagon, rectangle, double-headed and
centered vectors), and annotated (“quoted”) lines with –Sq.

� psxyz: Same, plus a vertical dash symbol.
� xyz2grd: Added –Au � l for upper/lower value at each node.

General enhancements. These affect most of the programs:

� The coastline data have been updated to GSHHS version 1.3. About 50 or so polygons had
lingering crossovers and some had duplicate points or failed to close; these have now been
fixed. Major errors in the Puget Sound coastline have also been corrected.

� New shorthand to repeat the most recently used projection (–J).
� Options for phase-shifting the stride and supplying a prefix for frame annotations (–B).
� Override defaults directly on the command line with any number of ––PAR=value op-

tions.
� Now choose from 63 ellipsoids and 223 datums, or use your own values.
� Numerous new defaults parameters, mostly in support of time-series functionality.
� Shorthand for global regions (–Rg for –R0/360/-90/90 and –Rd for –R-180/180/-90/90).
� Full support for either RGB, HSV, or CMYK in pen/fill command-line options or in cpt files.
� Support for English color names (e.g., red, lightbrown).
� Choice of unit when specifying pen thickness (cm, inch, point).
� Easier pen specification mechanism, with predefined names for certain pen thicknesses.
� Centering of plots on current page with –Xc, –Yc.
� More control over input/output table formats (–f, –:[i � o]).
� Ability to read and write NOAA/NGDC GRD98 grid format.
� Ability to add additional fonts.
� Custom paper media size (useful for posters and large maps).
� All text are now justified by the PostScript interpreter, as is the clipping of contours and “quoted

lines” to make space for annotation labels.
� Better support for various international character encodings.
� New Appendices M (color tables), N (custom symbols), O (contours and “quoted lines”), and

P (using both 3 and 4).
� New hidden files .gmtdefaults4 and .gmtcommands4 to ensure peaceful coexistence with

3-series.
� Data files in directories pointed to by the three environmental parameters $GMT DATADIR,

$GMT GRIDDIR, and $GMT IMGDIR can be specified without their full path names when
used as input files.

� We have added five new examples for a total of 25.
� Bourne shell utility gmtswitch simplifies switching between installed versions.
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2. Introduction

Most scientists are familiar with the sequence: raw data � processing � final illustration. In order to
finalize papers for submission to scientific journals, prepare proposals, and create overheads and slides
for various presentations, many scientists spend large amounts of time and money to create camera-ready
figures. This process can be tedious and is often done manually, since available commercial or in-house
software usually can do only part of the job. To expedite this process we introduce the Generic Mapping
Tools ( for short), which is a free1, software package that can be used to manipulate columns of
tabular data, time-series, and gridded data sets, and display these data in a variety of forms ranging from
simple x-y plots to maps and color, perspective, and shaded-relief illustrations. uses the PostScript
page description language [Adobe Systems Inc., 1990]. With PostScript, multiple plot files can easily
be superimposed to create arbitrarily complex images in gray tones or 24-bit true color. Line drawings,
bitmapped images, and text can be easily combined in one illustration. PostScript plot files are device-
independent: The same file can be printed at 300 dots per inch (dpi) on an ordinary laserwriter or at 2470
dpi on a phototypesetter when ultimate quality is needed. software is written as a set of UNIX tools2

and is totally self-contained and fully documented. The system is offered free of charge and is distributed
over the computer network (Internet) [Wessel and Smith, 1991; 1995a,b; 1998].

The original version 1.0 of was released in the summer of 1988 when the authors were graduate
students at Lamont-Doherty Earth Observatory of Columbia University. During our tenure as graduate stu-
dents, L-DEO changed its computing environment to a distributed network of UNIX workstations, and we
wrote to run in this environment. It became a success at L-DEO, and soon spread to numerous other
institutions in the US, Canada, Europe, and Japan. The current version benefits from the many suggestions
contributed by users of the earlier versions, and now includes more than 50 tools, 25 map projections, and
many other new, more flexible features. provides scientists with a variety of tools for data mani-
pulation and display, including routines to sample, filter, compute spectral estimates, and determine trends
in time series, grid or triangulate arbitrarily spaced data, perform mathematical operations (including fil-
tering) on 2-D data sets both in the space and frequency domain, sample surfaces along arbitrary tracks
or onto a new grid, calculate volumes, and find trend surfaces. The plotting programs will let the user
make linear, log10, and xa–yb diagrams, polar and rectangular histograms, maps with filled continents and
coastlines choosing from 25 common map projections, contour plots, mesh plots, monochrome or color
images, and artificially illuminated shaded-relief and 3-D perspective illustrations.

is written in the highly portable ANSI C programming language [Kernighan and Ritchie, 1988],
is fully POSIX compliant [Lewine, 1991], has no Year 2000 problems, and may be used with any hardware
running some flavor of UNIX, possibly with minor modifications. In writing , we have followed the
modular design philosophy of UNIX: The raw data � processing � final illustration flow is broken down
to a series of elementary steps; each step is accomplished by a separate or UNIX tool. This modular
approach brings several benefits: (1) only a few programs are needed, (2) each program is small and easy to
update and maintain, (3) each step is independent of the previous step and the data type and can therefore be
used in a variety of applications, and (4) the programs can be chained together in shell scripts or with pipes,
thereby creating a process tailored to do a user-specific task. The decoupling of the data retrieval step from
the subsequent massage and plotting is particularly important, since each institution will typically have its
own data base formats. To use with custom data bases, one has only to write a data extraction tool
which will put out data in a form readable by (discussed below). After writing the extractor, all other

modules will work as they are.
makes full use of the PostScript page description language, and can produce color illustrations

if a color PostScript device is available. One does not necessarily have to have access to a top-of-the-line
color printer to take advantage of the color capabilities offered by : Several companies offer imaging
services where the customer provides a PostScript plot file and gets color slides or hardcopies in return.
Furthermore, general-purpose PostScript raster image processors (RIPs) are now becoming available, let-
ting the user create raster images from PostScript and plot these bitmaps on raster devices like computer

1See GNU General Public Licence (www.gnu.org/copyleft/gpl.html) for terms on redistribution and modifications.
2The tools can also be installed on other platforms (see Appendix L).
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screens, dot-matrix printers, large format raster plotters, and film writers3. Because the publication costs of
color illustrations are high, offers 90 common bit and hachure patterns, including many geologic map
symbol types, as well as complete graytone shading operations. Additional bit and hachure patterns may
also be designed by the user. With these tools, it is possible to generate publication-ready monochrome
originals on a common laserwriter.

is thoroughly documented and comes with a technical reference and cookbook which explains the
purpose of the package and its many features, and provides numerous examples to help new users quickly
become familiar with the operation and philosophy of the system. The cookbook contains the shell scripts
that were used for each example; PostScript files of each illustration are also provided. All programs have
individual manual pages which can be installed as part of the on-line documentation under the UNIX man
utility or as web pages. In addition, the programs offer friendly help messages which make them essentially
self-teaching – if a user enters invalid or ambiguous command arguments, the program will print a warning
to the screen with a synopsis of the valid arguments. All the documentation is avaliable for web browsing
and may be installed at the user’s site.

The processing and display routines within are completely general and will handle any (x,y) or
(x,y,z) data as input. For many purposes the (x,y) coordinates will be (longitude, latitude) but in most cases
they could equally well be any other variables (e.g., wavelength, power spectral density). Since the
plot tools will map these (x,y) coordinates to positions on a plot or map using a variety of transformations
(linear, log-log, and several map projections), they can be used with any data that are given by two or three
coordinates. In order to simplify and standardize input and output, uses two file formats only. Arbi-
trary sequences of (x,y) or (x,y,z) data are read from multi-column ASCII tables, i.e., each file consists of
several records, in which each coordinate is confined to a separate column4. This format is straightforward
and allows the user to perform almost any simple (or complicated) reformatting or processing task using
standard UNIX utilities such as cut , paste, grep, sed and awk . Two-dimensional data that have been
sampled on an equidistant grid are read and written by in a binary “grdfile” using the functions pro-
vided with the netCDF library (a free, public-domain software library available separately from UCAR, the
University Corporation of Atmospheric Research [Treinish and Gough, 1987]). This XDR (External Data
Representation) based format is architecture independent, which allows the user to transfer the binary data
files from one computer system to another5. contains programs that will read ASCII (x,y,z) files and
produce gridded files. One such program, surface, includes new modifications to the gridding algorithm
developed by Smith and Wessel [1990] using continuous splines in tension.

Most of the programs will produce some form of output, which falls into four categories. Several of the
programs may produce more than one of these types of output:

1. 1-D ASCII Tables — For example, a (x � y) series may be filtered and the filtered values output. ASCII
output is written to the standard output stream.

2. 2-D binary (netCDF or user-defined) “grdfiles” – Programs that grid ASCII (x � y � z) data or operate
on existing grdfiles produce this type of output.

3. PostScript – The plotting programs all use the PostScript page description language to define plots.
These commands are stored as ASCII text and can be edited should you want to customize the plot
beyond the options available in the programs themselves.

4. Reports – Several programs read input files and report statistics and other information. Nearly
all programs have an optional “verbose” operation, which reports on the progress of computation. All
programs feature usage messages, which prompt the user if incorrect commands have been given.
Such text is written to the standard error stream and can therefore be separated from ASCII table
output.

is available over the Internet at no charge. To obtain a copy, read the relevant information on the
home page gmt.soest.hawaii.edu, or email listproc@hawaii.edu a note containing the single message

3One public-domain RIP is ghostscript , available from www.gnu.org.
4Programs now also allow for fast, binary multicolumn file i/o.
5While the netCDF format is the default, other formats are also possible, including user-defined formats.
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information gmt-group

The listserver will mail you back a shell-script that you may run to obtain all necessary programs,
libraries, and support data. After you obtain the archive, you will find that it contains information
on how to install on your hardware platform and how to obtain additional files that you may need or
want. The archive also contains a license agreement and registration file. We also maintain two electronic
mailing lists you may subscribe to in order to stay informed about bug fixes and upgrades (See Chapter 7).

For those without net-access that need to obtain : Geoware (http://www.geoware-online.com)
makes and distributes CD-Rs with the package, compatible supplements, and several Gb of useful
data sets. For more information send e-mail to geoware@geoware-online.com.

has served a multitude of scientists very well, and their responses have prompted us to develop
these programs even further. It is our hope that the new version will satisfy these users and attract new
users as well. We present this system to the community in order to promote sharing of research software
among investigators in the US and abroad.
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3. GMT overview and quick reference

3.1 GMT summary

The following is a summary of all the programs supplied with and a very short description of their
purpose. For more details, see the individual UNIX manual pages or the online web documentation. For a
listing sorted by program purpose, see Section 3.2.

blockmean L2 (x,y,z) table data filter/decimator
blockmedian L1 (x,y,z) table data filter/decimator
blockmode Mode estimate (x,y,z) table data filter/decimator
filter1d Filter 1-D table data sets (time series)
fitcircle Finds the best-fitting great or small circle for a set of points
gmt2rgb Convert Sun raster or grd file to red, green, blue component grids
gmtconvert Convert data tables from one format to another
gmtdefaults List the current default settings
gmtmath Mathematical operations on table data
gmtselect Select subsets of table data based on multiple spatial criteria
gmtset Change selected parameters in current .gmtdefaults4 file
grd2cpt Generate a color palette table from a gridded file
grd2xyz Conversion from 2-D gridded file to table data
grdblend Blend several partially over-lapping grdfiles onto one grid
grdclip Limit the z-range in gridded data sets
grdcontour Contouring of 2-D gridded data sets
grdcut Cut a sub-region from a gridded file
grdedit Modify header information in a 2-D gridded file
grdfft Perform operations on gridded files in the frequency domain
grdfilter Filter 2-D gridded data sets in the space domain
grdgradient Compute directional gradient from gridded files
grdhisteq Histogram equalization for gridded files
grdimage Produce images from 2-D gridded data sets
grdinfo Get information about gridded files
grdlandmask Create masking gridded files from shoreline data base
grdmask Reset grid nodes in/outside a clip path to constants
grdmath Mathematical operations on gridded files
grdpaste Paste together gridded files along a common edge
grdproject Project gridded data sets onto a new coordinate system
grdreformat Converts gridded files into other grid formats
grdsample Resample a 2-D gridded data set onto a new grid
grdtrack Sampling of 2-D gridded data set along 1-D track
grdtrend Fits polynomial trends to gridded files
grdvector Plotting of 2-D gridded vector fields
grdview 3-D perspective imaging of 2-D gridded data sets
grdvolume Calculate volumes under a surface within specified contour
makecpt Make color palette tables
mapproject Transformation of coordinate systems for table data
minmax Report extreme values in table data files
nearneighbor Nearest-neighbor gridding scheme
project Project table data onto lines or great circles
psbasemap Create a basemap plot
psclip Use polygon files to define clipping paths
pscoast Plot [and fill] coastlines, borders, and rivers on maps
pscontour Contour or image raw table data by triangulation
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pshistogram Plot a histogram
psimage Plot Sun rasterfiles on a map
pslegend Plot a legend on a map
psmask Create overlay to mask out regions on maps
psrose Plot sector or rose diagrams
psscale Plot grayscale or colorscale on maps
pstext Plot textstrings on maps
pswiggle Draw table data time-series along track on maps
psxy Plot symbols, polygons, and lines on maps
psxyz Plot symbols, polygons, and lines in 3-D
sample1d Resampling of 1-D table data sets
spectrum1d Compute various spectral estimates from time-series
splitxyz Split xyz files into several segments
surface A continuous curvature gridding algorithm
trend1d Fits polynomial or Fourier trends to y � f

�
x � series

trend2d Fits polynomial trends to z � f
�
x � y � series

triangulate Perform optimal Delauney triangulation and gridding
xyz2grd Convert an equidistant table xyz file to a 2-D gridded file

3.2 GMT quick reference

Instead of an alphabetical listing, this section contains a summary sorted by program purpose. Also in-
cluded is a quick summary of the standard command line options and a breakdown of the –J option for
each of the 29 map projections available in .

FILTERING OF 1-D AND 2-D DATA

blockmean L2 estimate (x � y � z) data filters/decimators
blockmedian L1 estimate (x � y � z) data filters/decimators
blockmode Mode estimate (x � y � z) data filters/decimators
filter1d Filter 1-D data (time series)
grdfilter Filter 2-D data in space domain

PLOTTING OF 1-D and 2-D DATA

grdcontour Contouring of 2-D gridded data
grdimage Produce images from 2-D gridded data
grdvector Plot vector fields from 2-D gridded data
grdview 3-D perspective imaging of 2-D gridded data
psbasemap Create a basemap frame
psclip Use polygon files as clipping paths
pscoast Plot coastlines, filled continents, rivers, and political borders
pscontour Direct contouring or imaging of xyz data by triangulation
pshistogram Plot a histogram
psimage Plot Sun rasterfiles on a map
pslegend Plot a legend on a map
psmask Create overlay to mask specified regions of a map
psrose Plot sector or rose diagrams
psscale Plot grayscale or colorscale
pstext Plot textstrings
pswiggle Draw anomalies along track
psxy Plot symbols, polygons, and lines in 2-D
psxyz Plot symbols, polygons, and lines in 3-D
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GRIDDING OF (X,Y,Z) TABLE DATA

nearneighbor Nearest-neighbor gridding scheme
surface Continuous curvature gridding algorithm
triangulate Perform optimal Delauney triangulation on xyz data

SAMPLING OF 1-D AND 2-D DATA

grdsample Resample a 2-D gridded data onto new grid
grdtrack Sampling of 2-D data along 1-D track
sample1d Resampling of 1-D data

PROJECTION AND MAP-TRANSFORMATION

grdproject Transform gridded data to a new coordinate system
mapproject Transform table data to a new coordinate system
project Project data onto lines or great circles

INFORMATION

gmtdefaults List the current default settings
gmtset Command-line editing of parameters in the .gmtdefaults4 file
grdinfo Get information about the content of gridded files
minmax Report extreme values in table data files

MISCELLANEOUS

gmtmath Reverse Polish Notation (RPN) calculator for table data
makecpt Create GMT color palette tables
spectrum1d Compute spectral estimates from time-series
triangulate Perform optimal Delauney triangulation on xyz data

CONVERT OR EXTRACT SUBSETS OF DATA

gmt2rgb Convert Sun raster or grd file to red, green, blue component grids
gmtconvert Convert table data from one format to another
gmtselect Select table data subsets based on multiple spatial criteria
grd2xyz Convert 2-D gridded data to table data
grdcut Cut a sub-region from a gridded file
grdblend Blend several partially over-lapping grdfiles onto one grid
grdpaste Paste together gridded files along common edge
grdreformat Convert from one grid format to another
splitxyz Split (x � y � z) table data into several segments
xyz2grd Convert table data to 2-D gridded file

DETERMINE TRENDS IN 1-D AND 2-D DATA

fitcircle Finds best-fitting great or small circles
grdtrend Fits polynomial trends to gridded files (z � f

�
x � y � )

trend1d Fits polynomial or Fourier trends to y � f
�
x � series

trend2d Fits polynomial trends to z � f
�
x � y � series

OTHER OPERATIONS ON 2-D GRIDS

grd2cpt Make color palette table from gridded file
grdclip Limit the z–range in gridded data sets
grdedit Modify grid header information
grdfft Operate on gridded files in frequency domain
grdgradient Compute directional gradients from gridded files
grdhisteq Histogram equalization for gridded files
grdlandmask Creates mask gridded file from coastline database
grdmask Set grid nodes in/outside a clip path to constants
grdmath Reverse Polish Notation (RPN) calculator for gridded files
grdvolume Calculate volume under a surface within a contour



CHAPTER 3. GMT OVERVIEW AND QUICK REFERENCE 10

STANDARDIZED COMMAND LINE OPTIONS

–B[p � s]xinfo[/yinfo[/zinfo]][WESNZwesnz+][:.title:] Tickmarks. Each info is
[t]stride[ � phase][u][l � p][:”label”:][:=”prefix”:][:,”unit”:], where l and p apply to log10 axes only, and
type t = � a, A, f, g, i, I � ; unit u = � c, C, d, D, h, H, K, k, m, M, o, O, r, R, u, U, y, Y �
The leading p � s selects primary [Default] or secondary axis items

–H[bf i][n headers] ASCII [input] tables have header record[s]
–J (upper case for width, lower case for scale) Map projection (see below)

–JAlon0 � lat0 � width Lambert azimuthal equal area
–JBlon0 � lat0 � lat1 � lat2 � width Albers conic equal area
–JClon0 � lat0 � width Cassini cylindrical
–JDlon0 � lat0 � lat1 � lat2 � width Equidistant conic
–JElon0 � lat0 � width Azimuthal equidistant
–JFlon0 � lat0 � horizon � width Azimuthal Gnomonic
–JGlon0 � lat0 � width Azimuthal orthographic
–JHlon0 � width Hammer equal area
–JIlon0 � width Sinusoidal equal area
–JJlon0 � width Miller cylindrical
–JKflon0 � width Eckert IV equal area
–JKslon0 � width Eckert VI equal area
–JLlon0 � lat0 � lat1 � lat2 � width Lambert conic conformal
–JMwidth or –JMlon0 � lat0 � width Mercator cylindrical
–JNlon0 � width Robinson
–JOalon0 � lat0 � az � width Oblique Mercator, 1: origin and azimuth
–JOblon0 � lat0 � lon1 � lat1 � width Oblique Mercator, 2: two points
–JOclon0 � lat0 � lonp � latp � width Oblique Mercator, 3: origin and pole
–JP[awidth[ � origin] Polar [azimuthal] (θ � r) (or cylindrical)
–JQlon0 � width Equidistant cylindrical (Plate Carrée)
–JRlon0 � width Winkel Tripel
–JSlon0 � lat0 � width General stereographic
–JTlon0 � width Transverse Mercator
–JUzone � width Universal Transverse Mercator (UTM)
–JVlon0 � width Van der Grinten
–JWlon0 � width Mollweide
–JXwidth[l � pexp � T � t][/height[l � pexp � T � t]][d] Linear, log10, xa–yb, and time
–JYlon0 � lats � width General cylindrical equal area

–K Append more PS later
–O This is an overlay plot
–P Select Portrait orientation
–Rwest/east/south/north[/zmin/zmax][r] Specify Region of interest
–U[/dx/dy/][label] Plot time-stamp on plot
–V Run in verbose mode
–X[a]off Shift plot origin in x-direction
–Y[a]off Shift plot origin in y-direction
–b[i � o][s][ncol] Select binary input or output
–ccopies Set number of plot copies [1]
–f[i � o]colinfo Set formatting of ASCII input or output
–: Expect y/x input rather than x/y
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4. General features

This section explains features common to all the programs in and summarizes the philosophy behind
the system. Some of the features described here may make more sense once you reach the cook-book
section where we present actual examples of their use.

4.1 GMT Units

programs can accept dimensional quantities in cm, inch, meter, or point (1/72 of an inch)1. There
are two ways to ensure that understands which unit you intend to use.

1. Append the desired unit to the dimension you supply. This way is explicit and clearly communicates
what you intend, e.g., –X4c means 4 cm.

2. Set the parameter MEASURE UNIT to the desired unit. Then, all dimensions without explicit unit
will be interpreted accordingly.

The latter method is less secure as other users may have a different unit set and your script may not
work as intended. We therefore recommend you always supply the desired unit explicitly.

4.2 GMT defaults

4.2.1 Overview and the .gmtdefaults4 file

Plot Title

60˚W 50˚W 40˚W 30˚W
10˚S

0˚

10˚N

BASEMAP_TYPE ANNOT_OFFSET_PRIMARY

TICK_LENGTH

TICK_PEN

FRAME_WIDTH
BASEMAP_FRAME_RGB

GRID_CROSS_SIZE_PRIMARY

HEADER_FONT_SIZE

HEADER_FONT

PLOT_DEGREE_FORMAT

DEGREE_SYMBOL

Figure 4.1: Some GMT parameters that affect plot appearance.

There are about 100 parameters which can be adjusted individually to modify the appearance of plots or
affect the manipulation of data. When a program is run, it initializes all parameters to the defaults2,
then tries to open the file .gmtdefaults4 in the current directory3. If not found, it will look for that file
in your home directory. If successful, the program will read the contents and set the default values to
those provided in the file. By editing this file you can affect features such as pen thicknesses used for
maps, fonts and font sizes used for annotations and labels, color of the pens, dots-per-inch resolution of
the hardcopy device, what type of spline interpolant to use, and many other choices (A complete list of all

1PostScript definition. In the typesetting industry a slighly different definition of point (1/72.27 inch) is used.
2Choose between SI and US default units by modifying gmt.conf in the share directory.
3To remain backwards compatible with 3.4.x we will also look for .gmtdefaults but only if .gmtdefaults4 cannot be found.
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the parameters and their default values can be found in the gmtdefaults manual pages). Figures 4.1, 4.2,
and 4.3 show the parameters that affect plots). You may create your own .gmtdefaults4 files by running
gmtdefaults and then modify those parameters you want to change. If you want to use the parameter
settings in another file you can do so by specifying +<defaultfile> on the command line. This makes
it easy to maintain several distinct parameter settings, corresponding perhaps to the unique styles required
by different journals or simply reflecting font changes necessary to make readable overheads and slides.
Note that any arguments given on the command line (see below) will take precedent over the default values.
E.g., if your .gmtdefaults4 file has x offset = 1i as default, the –X1.5i option will override the default and
set the offset to 1.5 inches.

There are at least two good reasons why the default options are placed in a separate parameter
file:

1. It would not be practical to allow for command-line syntax covering so many options, many of which
are rarely or never changed (such as the ellipsoid used for map projections).

2. It is convenient to keep separate .gmtdefaults4 files for specific projects, so that one may achieve a
special effect simply by running commands in a sub-directory whose .gmtdefaults4 file has the
desired settings. For example, when making final illustrations for a journal article one must often
standardize on font sizes and font types, etc. Keeping all those settings in a separate .gmtdefaults4
file simplifies this process. Likewise, scripts that make figures for PowerPoint presentations
often use a different color scheme and font size than output intended for laser printers. Organizing
these various scenarios into separate .gmtdefaults4 files will minimize headaches associated with
micro-editing of illustrations.

90˚W

80˚W

80˚W

70˚W

70˚W

60˚W

10˚N10˚N
10˚N

20˚N

20˚N

30˚N

30˚N

X_ORIGIN

Y_ORIGIN

FRAME_PEN

OBLIQUE_ANNOTATION

GRID_PEN_PRIMARY

ANNOT_MAX_ANGLE

ANNOT_MIN_SPACINGLINE_STEP
PAGE_COLOR
PAGE_MEDIA

ANNOT_FONT_PRIMARY
ANNOT_FONT_SIZE_PRIMARY

Figure 4.2: More GMT parameters that affect plot appearance.

4.2.2 Changing GMT Defaults

As mentioned, programs will attempt to open a file named .gmtdefaults4. At times it may be desirable
to override that default. There are several ways in which this can be accomplished.

1. Supply another filename using the +filename syntax, i.e., on the same command line as the
command we append the name of the alternate .gmtdefaults4 file with the plus sign as a prefix.
Because any changes only apply to that one command you would have to append the alternate file to
every command in your script. This is tedious but may be an option for situations when you cannot
write in the current directory.

2. A perhaps less tedious method is to start each script by making a copy of the current .gmtdefaults4,
then copy the desired .gmtdefaults4 file to the current directory, and finally undo the changes at the
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end of the script. Possible side effects include premature ending of the script due to user error or bugs
which means the final resetting does not take place (unless you write your script very carefully.)

3. To permanently change some of the parameters on the fly inside a script the gmtset utility
can be used. E.g., to change the primary annotation font to 12 point Times-Bold we run

gmtset ANNOT FONT PRIMARY Times-Bold ANNOT FONT SIZE PRIMARY 12

These changes will remain in effect until they are overridden.

4. Finally, if all you want to achieve is to change a few parameters during the execution of a single
command but otherwise leave the environment intact, consider passing the parameter changes on
the command line via the ––PAR=value mechanism. For instance, to temporarily set the output
format for floating points to have lots of decimals, say, for map projection coordinate output, append
––D FORMAT=%.12lg to the command in question.

In addition to those parameters that directly affect the plot there are numerous parameters than modify units,
scales, etc. For a complete listing, see the gmtdefaults man pages. We suggest that you go through all
the available parameters at least once so that you know what is available to change via one of the described
mechanisms.

2004 Oct  1 08:55:28 Dazed and Confused

10−2
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100

101

102

y−
ax

is
 la
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00 06 12 18 00 06 12 18 00
Setembro 11 Setembro 12

x−axis label

X_AXIS_LENGTH

Y_AXIS_TYPE

BASEMAP_AXES

Y_AXIS_LENGTH

UNIX_TIME_POS

UNIX_TIME LABEL_FONT
LABEL_FONT_SIZE

PLOT_DATE_FORMAT

PLOT_CLOCK_FORMAT

TIME_LANGUAGE

ANNOT_FONT_SECONDARY
ANNOT_FONT_SIZE_SECONDARY

Figure 4.3: Even more GMT parameters that affect plot appearance.

4.3 Command Line Arguments

Each program requires certain arguments specific to its operation. These are explained in the manual pages
and in the usage messages. Most programs are “case-sensitive”; almost all options must start with an
upper-case letter. We have tried to choose letters of the alphabet which stand for the argument so that they
will be easy to remember. Each argument specification begins with a hyphen (except input file names; see
below), followed by a letter, and sometimes a number or character string immediately after the letter. Do
not space between the hyphen, letter, and number or string. Do space between options. Example:
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Option Meaning
–B Defines tickmarks, annotations, and labels for basemaps and axes
–H Specifies that input/output tables have header record(s)
–J Selects a map projection or coordinate transformation
–K Allows more plot code to be appended to this plot later
–O Allows this plot code to be appended to an existing plot
–P Selects Portrait plot orientation [Default is landscape]
–R Defines the extent of the map/plot region
–U Plots a time-stamp, by default in the lower left corner of page
–V Selects verbose operation; reporting on progress
–X Sets the x-coordinate for the plot origin on the page
–Y Sets the y-coordinate for the plot origin on the page
–b Selects binary input and/or output
–c Specifies the number of plot copies
–f Specifies the data format on a per column basis
–: Assumes input geographic data are (lat,lon) and not (lon,lat)

Table 4.1: The 15 standardized GMT command line switches.

pscoast -R0/20/0/20 -Ggray -JM6i -Wthin -B5 -V -P � map.ps

4.4 Standardized command line options

Most of the programs take many of the same arguments like those related to setting the data region, the
map projection, etc. The 15 switches in Table 4.1 have the same meaning in all the programs (allthough
some programs may not use all of them). These options will be described here as well as in the manual
pages, as is vital that you understand how to use these options. We will present these options in order of
importance (some are use a lot more than others).

4.4.1 Data Domain or Map Region: The –R option

−90˚ −80˚ −70˚

20˚ 20˚

30˚ 30˚

a) –Rxmin/xmax/ymin/ymax

−90˚ −80˚

20˚

30˚

b) –Rxlleft/ylleft/xuright/yuright r

Figure 4.4: The plot region can be specified in two different ways. (a) Extreme values for each dimension,
or (b) coordinates of lower left and upper right corners.
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The –R option defines the map region or data domain of interest. It may be specified in one of two
ways (Figure 4.4):

1. –Rxmin/xmax/ymin/ymax. This is the standard way to specify Cartesian data domains and geograph-
ical regions when using map projections where meridians and parallels are rectilinear.

2. –Rxlleft/ylleft/xuright/yurightr. This form is used with map projections that are oblique, making
meridians and parallels poor choices for map boundaries. Here, we instead specify the lower left
corner and upper right corner geographic coordinates, followed by the suffix r.

For rectilinear projections the two forms give identical results. Depending on the selected map projection
(or the kind of expected input data), the boundary coordinates may take on three different formats:

Geographic coordinates: These are longitudes and latitudes and may be given in decimal degrees (e.g.,
-123.45417) or in the [ � ]ddd[:mm[:ss[.xxx]]][W � E � S � N] format (e.g., 123:27:15W). Note that –Rg
and –Rd are shorthands for “global domain” –R0/360/-90/90 and –R-180/180/-90/90, respectively.

Calendar time coordinates: These are absolute time coordinates referring to a Gregorian or ISO calendar.
The general format is [date]T[clock], where date must be in the yyyy[-mm[-dd]] (year, month, day-of-
month) or yyyy[-jjj] (year and day-of-year) for Gregorian calendars and yyyy[-Www[-d]] (year, week,
and day-of-week) for the ISO calendar. If no date is given we assume the present day. Following
the [optional] date string we require the T flag. The optional clock string is a 24-hour clock in
hh[:mm[:ss[.xxx]]] format. If no clock is given it implies 00:00:00, i.e., the start of the specified
day. Note that not all of the specified enteties need be present in the data. All calendar date-clock
strings are internally represented as double precision seconds since proleptic Gregorian date Mon Jan
1 00:00:00 0001. Proleptic means we assume that the modern calendar can be extrapolated forward
and backward; a year zero is used, and Gregory’s reforms4 are extrapolated backward. Note that this
is not historical.

Other coordinates: These are simply anything that is neither geographic nor calendar time related and
are expected to be simple floating point values such as [ � ]xxx.xxx[E � e � D � d[ � ][xx]], i.e., regular
or exponential notations, with the enhancement to understand FORTRAN double precision output
which may use D instead of E for exponents. These values are simply converted as they are to
internal representation. One exception is the concept of relative time which is read as a floating
point offset from an absolute time reference point (epoch). The unit and the epoch are specified
with the TIME SYSTEM parameter. Relative time coordinates are expected when a coordinate
transformation involving relative time has been selected or when the –f switch has been used to
indicate relative time coordinates.5

4.4.2 Coordinate Transformations and Map Projections: The –J option

This option selects the coordinate transformation or map projection. The general format is

� –Jδ[parameters/]scale. Here, δ is a lower-case letter of the alphabet that selects a particular map
projection, the parameters is zero or more slash-delimited projection parameter, and scale is map
scale given in distance units per degree or as 1:xxxxx.

4The Gregorian Calendar is a revision of the Julian Calendar which was instituted in a papal bull by Pope Gregory XIII in 1582.
The reason for the calendar change was to correct for drift in the dates of signifigant religious observations (primarily Easter) and
to prevent further drift in the dates. The important effects of the change were (a) Drop 10 days from October 1582 to realign the
Vernal Equinox with 21 March, (b) change leap year selection so that not all years ending in ”00” are leap years, and (c) change
the beginning of the year to 1 January from 25 March. Adoption of the new calendar was essentially immediate within Catholic
countries. In the Protestant countries, where papal authority was neither recognized not appreciated, adoption came more slowly.
England finally adopted the new calendar in 1752, with eleven days removed from September. The additional day came because the
old and new calendars disagreed on whether 1700 was a leap year, so the Julian calendar had to be adjusted by one more day.

5While UTM coordinates clearly refer to points on the Earth, in this context they are considered “other”. Thus, when we refer to
“geographical” coordinates herein we imply longitude, latitude.
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GMT PROJECTIONS

GEOGRAPHIC PROJECTIONS

CYLINDRICAL CONICAL AZIMUTHAL THEMATIC OTHER

Basic [E]
Cassini
Equidistant
Mercator [C]
Miller
Oblique Mercator [C]
Transverse Mercator [C]
UTM [C]

Albers [E]
Lambert [C]
Equidistant

Equidistant
Gnomonic
Orthographic
Lambert [E]
Stereographic [C]

Eckert IV + VI [E]
Hammer [E]
Mollweide [E]
Robinson
Sinusoidal [E]
Winkel Tripel
Van der Grinten

Linear
Logarithmic
Exponential
Time
Polar

C = Conformal
E = Equal Area

Figure 4.5: The 29 map projections and coordinate transformations available in GMT.

� –J∆[parameters/]width. Here, ∆ is an upper-case letter of the alphabet that selects a particular map
projection, the parameters is zero or more slash-delimited projection parameter, and width is map
width (map height is automatically computed from the implied map scale and region).

The projections avaiable in are presented in Figure 4.5. For details on all projections and
the required parameters, see the psbasemap man page. We will also show examples of every projection
in the next chapter, and a quick summary of projection syntax was given in Chapter 3.

4.4.3 Map frame and axes annotations: The –B option

This is by far the most complicated option in , but most examples of its usage are actually quite simple.
Given as –B[p � s]xinfo[/yinfo[/zinfo]][:.”title string”:][W � w][E � e][S � s][N � n][Z � z[+]], this switch specifies
map boundaries (or plot axes) to be plotted by using the selected information. The optional flag following
–B selects p(rimary) [Default] or s(econdary) axes information (mostly used for time axes annotations; see
examples below). The components xinfo, yinfo and zinfo are of the form

info[:”axis label”:][:=”prefix”:][:,”unit label”:]

where info is one or more concatenated substrings of the form [t]stride[ � phase][u]. The t flag sets the
axis item of interest; the available items are listed in Table 4.2. By default, all 4 map boundaries (or plot
axes) are plotted (denoted W, E, S, N). To change this selection, append the codes for those you want
(e.g., WSn). Upper case (e.g., W) will annotate in addition to draw axis/tick-marks. The title, if given,
will appear centered above the plot6. Unit label or prefix may start with a leading – to suppress the space
between it and the annotation. Normally, equidistant annotations occur at multiples of stride; you can
phase-shift this by appending � phase.

Flag Description
a Annotation tick spacing
f Frame tick spacing
g Grid tick spacing

Table 4.2: Interval type codes.

6However, it is suppressed when a 3-D view is selected.
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Note that the appearance of certain time annotations (month-, week-, and day-names) may be affected
by the TIME LANGUAGE, TIME FORMAT PRIMARY, and TIME FORMAT SECONDARY set-
tings.

The unit flag u can take on one of 18 codes; these are listed in Table 4.3. Almost all of these units
are time-axis specific. However, the m and c units will be interpreted as arc minutes and arc seconds,
respectively, when a map projection is in effect.

Flag Unit Description
Y year Plot using all 4 digits
y year Plot using last 2 digits
O month Format annotation using PLOT DATE FORMAT
o month Plot as 2-digit integer (1–12)
U ISO week Format annotation using PLOT DATE FORMAT
u ISO week Plot as 2-digit integer (1–53)
r Gregorian week 7-day stride from start of week (TIME WEEK START)
K ISO weekday Plot name of weekday in selected language
k weekday Plot number of day in the week (1-7) see TIME WEEK START
D date Format annotation using PLOT DATE FORMAT
d day Plot day of month (1–31) or day of year (1–366) see PLOT DATE FORMAT
R day Same as d; annotations aligned with week (TIME WEEK START)
H hour Format annotation using PLOT CLOCK FORMAT
h hour Plot as 2-digit integer (0–24)
M minute Format annotation using PLOT CLOCK FORMAT
m minute Plot as 2-digit integer (0–60)
C seconds Format annotation using PLOT CLOCK FORMAT
c seconds Plot as 2-digit integer (0–60)

Table 4.3: Interval unit codes.

There may be two levels of annotations. Here, “primary” refers to the annotation that is closest to the
axis (this is the primary annotation), while “secondary” refers to the secondary annotation that is plotted
further from the axis. The examples below will clarify what is meant. Note that the terms “primary” and
“secondary” do not reflect any hierarchical order of units: The “primary” annotation interval is smaller
(e.g., days) while the “secondary” annotation interval typically is larger (e.g., months).

Geographic basemaps

Geographic basemaps may differ from regular plot axis in that some projections support a “fancy” form of
axis and is selected by the BASEMAP TYPE setting. The annotations will be formatted according to the
PLOT DEGREE FORMAT template and DEGREE SYMBOL setting. A simple example of part of a
basemap is shown in Figure 4.6.

1˚W 0˚ 1˚E 2˚E
annotation frame grid

Figure 4.6: Geographic map border using separate selections for annotation, frame, and grid inter-
vals. Formatting of the annotation is controlled by the parameter PLOT DEGREE FORMAT in your
.gmtdefaults4 file.

The machinery for primary and secondary annotations introduced for time-series axes can also be
utilized for geographic basemaps. This may be used to separate degree annotations from minutes- and
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seconds-annotations. For a more complicated basemap example using several sets of intervals, including
different intervals and pen attributes for grid lines and grid crosses, see Figure 4.7.

45' 30' 15' 45' 30' 15' 15' 30' 45'2˚W 1˚W 0˚ 1˚E

P:
annotation frame grid

S:
annotation frame grid

Figure 4.7: Geographic map border with both primary (P) and secondary (S) components.

Cartesian linear axes

For non-geographic axes, the BASEMAP TYPE setting is implicitly set to plain. Other than that, carte-
sian linear axes are very similar to geographic axes. The annotation format may be controlled with the
D FORMAT parameter. By default, it is set to “%lg”, which is a C language format statement for floating
point numbers7, and with this setting the various axis routines will automatically determine how many
decimal points should be used by inspecting the stride settings. If D FORMAT is set to another format it
will be used directly (.e.g, “%.2lf” for a fixed, two decimals format). Note that for these axes you may use
the unit setting to add a unit string to each annotation (see Figure 4.8).

0 % 4 % 8 % 12 %

Frequency

annotation frame grid

Figure 4.8: Linear Cartesian projection axis. Long tickmarks accompany annotations, shorter ticks indicate
frame interval. The axis label is optional. We used –R0/12/0/1 –JX3/0.4 –Ba4f2g1:Frequency::,%:.

Cartesian log10 axes

Due to the logarithmic nature of annotation spacings, the stride parameter takes on specific meanings. The
following concerns are specific to log axes:

1. stride must be 1, 2, or 3. Annotations/ticks will then occur at 1, 1–2–5, or 1,2,3,4,...,9, respectively,
for each magnitude range.

2. Append l to stride. Then, log10 of the annotation is plotted at every integer log10 value (e.g., x � 100
will be annotated as “2”) [Default annotates x as is].

3. Append p to stride. Then, annotations appear as 10 raised to log10 of the value (e.g., 10 �
5).

Cartesian exponential axes

Normally, stride will be used to create equidistant (in the user’s unit) annotations or ticks, but because of
the exponential nature of the axis, such annotations may converge on each other at one end of the axis. To
avoid this problem, you can append p to stride, and the annotation interval is expected to be in transformed
units, yet the annotation itself will be plotted as un-transformed units. E.g., if stride = 1 and power = 0.5
(i.e., sqrt), then equidistant annotations labeled 1, 4, 9, ... will appear.

7Please consult the man page for printf or any book on C.
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100 101 102 103

Axis Label

0 1 2 3

Axis Label

1 10 100 1000

Axis Label

Figure 4.9: Logarithmic projection axis using separate values for annotation, frame, and grid intervals.
(top) Here, we have chosen to annotate the actual values. Interval = 1 means every whole power of 10, 2
means 1, 2, 5 times powers of 10, and 3 means every 0.1 times powers of 10. We used –R1/1000/0/1 –
JX3l/0.4 –Ba1f2g3. (middle) Here, we have chosen to annotate log10 of the actual values, with –Ba1f2g3l.
(bottom) We annotate every power of 10 using log10 of the actual values as exponents, with –Ba1f2g3p.

0 9 36 81

Axis Label

0 20 40 60 80 100

Axis Label

Figure 4.10: Exponential or power projection axis. (top) Using an exponent of 0.5 yields a
�

x axis.
Here, intervals refer to actual data values, in –R0/100/0/1 –JX3p0.5/0.4 –Ba20f10g5. (bottom) Here,
intervals refer to projected values, although the annotation uses the corresponding unprojected values, as
in –Ba3f2g1p.

Cartesian time axes

What sets time axis apart from the other kinds of plot axes is the numerous ways in which we may want to
tick and annotate the axis. Not only do we have both primary and secondary annotation items but we also
have interval annotations versus tickmark annotations, numerous time units, and several ways in which to
modify the plot. We will demonstrate this flexibility with a series of examples. While all our examples will
only show a single x-axis, time-axis is supported for all axes.

Our first example shows a time period of almost two months in Spring 2000. We want to annotate the
month intervals as well as the date at the start of each week:

gmtset PLOT_DATE_FORMAT -o ANNOT_FONT_SIZE_PRIMARY +9p
psbasemap -R2000-4-1T/2000-5-25T/0/1 -JX6T/0.2 -Bpa7Rf1d -Bsa1OS -P > GMT_-B_time1.ps

These commands result in Figure 4.11. Note the leading hyphen in the PLOT DATE FORMAT re-
moves leading zeros from calender items (e.g., 02 becomes 2).

The next example shows two different ways to annotate an axis portraying 2 days in September:

gmtset PLOT_CLOCK_FORMAT hh:mm
psbasemap -R2001-9-11T/2001-9-13T/0/1 -JX6t/0.2 -Bpa6Hf1h -Bsa1KS -P -K > GMT_-B_time2.ps
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2 9 16 23 30 7 14 21

April May

Figure 4.11: Cartesian time axis, example 1.

gmtset PLOT_DATE_FORMAT "o dd"
psbasemap -R -JX -Bpa6Hf1h -Bsa1DS -O -Y0.65i >> GMT_-B_time2.ps

The lower example (Figure 4.12) chooses to annotate the weekdays (by specifying a1K) while the upper
example choses dates (by specifying a1D). Note how the clock format only selects hours and minutes (no
seconds) and the date format selects a month name, followed by one space and a two-digit day-of-month
number.

00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00

Tuesday Wednesday

00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00

September 11 September 12

Figure 4.12: Cartesian time axis, example 2.

The third example presents two years, annotating both the years and every 3rd month.

gmtset PLOT_DATE_FORMAT o TIME_FORMAT_PRIMARY Character
psbasemap -R1997T/1999T/0/1 -JX6T/0.2 -Bpa3Of1o -Bsa1YS -P > GMT_-B_time3.ps

Note that while the year annotation is centered on the 1-year interval, the month annotations must be
centered on the corresponding month and not the 3-month interval. The PLOT DATE FORMAT selects
month name only and PLOT FORMAT PRIMARY selects the 1-character, upper case abbreviation of
month names using the current language (selected by TIME LANGUAGE).

J A J O J A J O
1997 1998

Figure 4.13: Cartesian time axis, example 3.

The fourth example (Figure 4.14) only shows a few hours of a day. We select both primary and sec-
ondary annotations, ask for a 12-hour clock, and let time go from right to left:

gmtset PLOT_CLOCK_FORMAT -hham
psbasemap -R0.2/0.35/0/1 -JX-6t/0.2 -Bpa15mf5m -Bsa1HS -P > GMT_-B_time4.ps

The fifth example shows a few weeks of time (Figure 4.15). The lower axis shows ISO weeks with
week numbers and abbreviated names of the weekdays. The upper uses Gregorian weeks (which start at
the day chosen by TIME WEEK START); they do not have numbers.

gmtset PLOT_DATE_FORMAT u TIME_FORMAT_SECONDARY full
psbasemap -R2001-9-11T/2001-9-29T/0/1 -JX6t/0.2 -Bpa1K -Bsa1US -P -K > GMT_-B_time5.ps
gmtset PLOT_DATE_FORMAT o TIME_WEEK_START Sunday TIME_FORMAT_PRIMARY Char
psbasemap -R2001-9-8T/2001-9-29T/0/1 -JX6t/0.2 -Bpa3Kf1k -Bsa1rS -O -Y0.65i >> GMT_-B_time5.ps

Our sixth example shows the first five months of 1996, and we have annotated each month with an
abbreviated, upper case name and 2-digit year. Only the primary axes information is specified.
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15304515304515304515
5am6am7am8am

Figure 4.14: Cartesian time axis, example 4.

T W T F S S M T W T F S S M T W T F
Week 37 Week 38 Week 39

S S W S S W S S W

Figure 4.15: Cartesian time axis, example 5.

gmtset PLOT_DATE_FORMAT "o yy" TIME_FORMAT_PRIMARY Abbreviated
psbasemap -R1996T/1996-6T/0/1 -JX6T/0.2 -Ba1Of1dS -P > GMT_-B_time6.ps

Our seventh and final example illustrates annotation of year-days. Unless we specify the formatting
with a leading hyphen in PLOT DATE FORMAT we get 3-digit integer days. Note that in order to have
the two years annotated we need to allow for the annotation of small fractional intervals; normally such
truncated interval must be at least half of a full interval.

gmtset PLOT_DATE_FORMAT jjj TIME_INTERVAL_FRACTION 0.05
psbasemap -R2000-12-15T/2001-1-15T/0/1 -JX6T/0.2 -Bpa5Df1d -Bsa1YS -P > GMT_-B_time7.ps

4.4.4 Header data records: The –H option

The –H[i][n recs] option lets know that input file(s) have one [Default] or more header records. If
there are more than one header record you must specify the number after the –H option, e.g., –H4. The
default number of header records if –H is used is one of the many parameters in the .gmtdefaults4 file
(N HEADER RECS), but can be overridden by –Hn header recs. Note that blank lines and records that
be start with the character # are automatically skipped. Normally, programs that both read and write tables
will output the header records that are found on input. Use –Hi to suppress the writing of header records.

4.4.5 Portrait plot orientation: The –P option

–P selects Portrait plotting mode8. In general, a plot has an x-axis increasing from left to right and a y-axis
increasing from bottom to top. If the paper is turned so that the long dimension of the paper is parallel to
the x-axis then the plot is said to have Landscape orientation. If the long dimension of the paper parallels
the y-axis the orientation is called Portrait (think of taking pictures with a camera and these words make
sense). The default Landscape orientation is obtained by translating the origin in the x-direction (by the
width of the chosen paper PAPER MEDIA) and then rotating the coordinate system counterclockwise by
90

�

. By default the PAPER MEDIA is set to Letter (or A4 if SI is chosen); this value must be changed
when using different media, such as 11” x 17” or large format plotters (Figure 4.18).

4.4.6 Plot Overlays: The –K –O options

The –K and –O options control the generation of PostScript code for multiple overlay plots. All PostScript
files must have a header (for initializations), a body (drawing the figure), and a trailer (printing it out) (see
Figure 4.19). Thus, when overlaying several plots we must make sure that the first plot call ommits
the trailer, that all intermediate calls omit both header and trailer, and that the final overlay omits the header.

8For historical reasons, the Default is Landscape, see gmtdefaults to change this.
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JAN 96 FEB 96 MAR 96 APR 96 MAY 96

Figure 4.16: Cartesian time axis, example 6.

350 355 360 365 005 010
2000 2001

Figure 4.17: Cartesian time axis, example 7.

–K omits the trailer which implies that more PostScript code will be appended later [Default terminates the
plot system]. –O selects Overlay plot mode and ommits the header information [Default initializes a new
plot system]. Most unexpected results for multiple overlay plots can be traced to the incorrect use of these
options. If you run only one plot program, ignore both the –O and –K options; they are only used when
stacking plots.

4.4.7 Timestamps on plots: The –U option

–U draws UNIX System time stamp. Optionally, append an arbitrary text string (surrounded by double
quotes), or the code c, which will plot the current command string (Figure 4.20).

4.4.8 Verbose Feedback: The –V option

–V selects verbose mode, which will send progress reports to stderr [Default runs “silently”]. The inter-
pretation of this option can be toggled by changing the default VERBOSE.

4.4.9 Plot positioning and layout: The –X –Y options

–X and –Y shift origin of plot by (xoff,yoff) inches (Default is (X ORIGIN, Y ORIGIN) for new plots9

and (0,0) for overlays (–O)). By default, all translations are relative to the previous origin (see Figure 4.21).
Supply offset as c to center the plot in that direction relative to the page margin. Absolute translations (i.e.,
relative to a fixed point (0,0) at the lower left corner of the paper) can be achieve by prepending “a” to the
offsets. Subsequent overlays will be co-registered with the previous plot unless the origin is shifted using
these options. The offsets are measured in the current coordinates system (which can be rotated using the
initial –P option; subsequent –P options for overlays are ignored).

4.4.10 Binary table i/o: The –b option

All programs that accept table data input may read ASCII or binary data. When using binary data the
user must be aware of the fact that has no way of determining the actual number of columns in the
file. You must therefore pass that information to via the binary –bi[s]n option, where n is the actual
number of data columns (s indicates single rather than double precision). Note that n may be larger than
m, the number of columns that the program requires to do its task. If n is not given then it defaults to
m. If n

�
m an error is generated. For more information, see Appendix B.

4.4.11 Data type selection: The –f option

When map projections are not required we must explicitly state what kind of data each input or output
column contains. This is accomplished with the –f option. Following an optional i (for input only) or
o (for output only), we append a text string with information about each column (or range of columns)
separated by commas. Each string starts with the column number (0 is first column) followed by either
x (longitude), y (latitude), T (absolute calendar time) or t (relative time). If several consecutive columns

9Ensures that boundary annotations do not fall off the page.
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–P Default
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Figure 4.18: Users can specify Landscape [Default] or Portrait (–P) orientation.

HEADER

BODY1

BODYn

TRAILER

–O ommits the header.

2nd through n-1’th overlays
require both –O and –K.

–K ommits the trailer.

Figure 4.19: A final PostScript file consists of a stack of individual pieces.

have the same format you may specify a range of columns rather than a single column, i.e., 0-4 for the first
5 columns. For example, if our input file has geographic coordinates (latitude, longitude) with absolute
calendar coordinates in the columns 3 and 4, we would specify fi0y,1x,3-4T. All other columns are assumed
to have the default, floating point format and need not be set individually. The shorthand –f[i � o]g means
–f[i � o]0x,1y (geographic coordinates). For more information, see Section 4.10.

4.4.12 Number of Copies: The –c option

The –c option specifies the number of plot copies [Default is 1]. This value is embedded in the PostScript
file and will make a printer issue the chosen number of copies without respooling.

4.4.13 Lat/Lon or Lon/Lat?: The –: option

For geographical data, the first column is expected to contain longitudes and the second to contain latitudes.
To reverse this expectation you must apply the –: option. Optionally, append i or o to restrict the effect to
input or output only. Note that command line arguments that may take geographic coordinates (e.g., –R)
always expect longitude before latitude.

4.5 Command Line History

programs “remember” the standardized command line options (See Section 4.4) given during their
previous invocations and this provides a shorthand notation for complex options. For example, if a basemap
was created with an oblique Mercator projection, specified as
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2004 Oct  1 08:56:42 optional command string or text here

Figure 4.20: The –U option makes it easy to “date” a plot.

xoff

yoff
x

y

Figure 4.21: Plot origin can be translated freely with –X –Y.

-Joc170W/25:30S/33W/56:20N/1:500000

then a subsequent psxy command to plot symbols only needs to state –Jo in order to activate the same
projection. In contrast, note that –J by itself will pick the most recently used projection. Previous com-
mands are maintained in the file .gmtcommands4, of which there will be one in each directory you run the
programs from. This is handy if you create separate directories for separate projects since chances are that
data manipulations and plotting for each project will share many of the same options. Note that an option
spelled out on the command line will always override the last entry in the .gmtcommands4 file and, if exe-
cution is successful, will replace this entry as the previous option argument in the .gmtcommands4 file. If
you call several modules piped together then cannot guarantee that the .gmtcommands4 file is
processed in the intended order from left to right. The only guarantee is that the file will not be clobbered
since uses advisory file locking. The uncertainty in processing order makes the use of shorthands in
pipes unreliable. We therefore recommend that you only use shorthands in single process command lines,
and spell out the full command option when using chains of commands connected with pipes.

4.6 Usage messages, syntax- and general error messages

Each program carries a usage message. If you enter the program name without any arguments, the program
will write the complete usage message to standard error (your screen, unless you redirect it). This message
explains in detail what all the valid arguments are. If you enter the program name followed by a hyphen (–)
only you will get a shorter version which only shows the command line syntax and no detailed explanations.
If you incorrectly specify an option or omit a required option, the program will produce syntax errors and
explain what the correct syntax for these options should be. If an error occurs during the running of a
program, the program will in some cases recognize this and give you an error message. Usually this will
also terminate the run. The error messages generally begin with the name of the program in which the error
occurred; if you have several programs piped together this tells you where the trouble is.

4.7 Standard Input or File, header records

Most of the programs which expect table data input can read either standard input or input in one or several
files. These programs will try to read stdin unless you type the filename(s) on the command line without the
above hyphens. (If the program sees a hyphen, it reads the next character as an instruction; if an argument
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begins without a hyphen, it tries to open this argument as a filename). This feature allows you to connect
programs with pipes if you like. If your input is ASCII and has one or more header records, you must
use the –H option (see Section 4.4.4). For binary table data no headers are allowed. ASCII files may in
many cases also contain sub-headers separating data segments. These are called “multi-segment files” and
requires a special option (typically –M); see Appendix B for complete documentation.

If filenames are given for reading, programs will first look for them in the current directory. If the
file is not found, the programs will look in three other directories pointed to by environmental parameters (if
set). These are GMT GRIDDIR, GMT IMGDIR, and GMT DATADIR, and they may be set by the user
to point to directories that contain data sets of general use. Normally, the first directory will hold gridded
data sets accessible via the supplemental program grdraster whereas the second will hold the binary
Mercator data images accessible via the supplemental program img2grd; see Appendix A for information
about these supplemental programs. The third directory may hold miscellaneous data sets such as lines,
points, and text plottable directly with psxy or pstext. Data sets that the user finds are often needed may
be placed in these directories, thus eliminating the need to specify a full path to the file. Program output is
always written to the current directory unless a full path has been specified.

4.8 Verbose Operation

Most of the programs take an optional –V argument which will run the program in the “verbose” mode (see
Section 4.4.8). Verbose will write to standard error information about the progress of the operation you are
running. Verbose reports things such as counts of points read, names of data files processed, convergence
of iterative solutions, and the like. Since these messages are written to stderr, the verbose talk remains
separate from your data output.

4.9 Output

Most programs write their results, including PostScript plots, to standard output. The exceptions are those
which may create binary netCDF grd-files such as surface (due to the design of netCDF a filename must
be provided; however, alternative binary output formats allowing piping are available; see Section 4.17).
With UNIX you can redirect standard output to a file or pipe it into another process. Error messages, usage
messages, and verbose comments are written to standard error in all cases. You can use UNIX to redirect
standard error as well, if you want to create a log file of what you are doing.

4.10 Input Data Formats

Most of the time, will know what kind of x and y coordinates it is reading because you have selected
a particular coordinate transformation or map projection. However, there may be times when you must
explicitly specify what you are providing as input using the –f switch. When binary data are expected (–b)
they must all be floating point numbers, however for ASCII input there are numerous ways to encode data
coordinates (which may be separated by white-space or commas). Valid input data are generally of the
same form as the arguments to the –R option (see Section 4.4.1), with additional flexibility for calendar
data.

Because of the widespread use of incompatible and ambiguous formats, the processing of input date
components is guided by the template INPUT DATE FORMAT in your .gmtdefaults4 file; it is by de-
fault set to yyyy-mm-dd. Y2K-challenged input data such as 29/05/89 can be processed by setting IN-
PUT DATE FORMAT to dd/mm/yy. A complete discription of possible formats is given in the gmtde-
faults man page. The clock string is more standardized but issues like 12- or 24-hour clocks complicate
matters as well as the presence or absence of delimiters between fields. Thus, the processing of input clock
coordinates is guided by the template INPUT CLOCK FORMAT which defaults to hh:mm:ss.xxx.

programs that require a map projection argument will implicitly know what kind of data to expect,
and the input processing is done accordingly. However, some programs that simply report on minimum
and maximum values or just do a reformatting of the data will in general not know what to expect, and
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furthermore there is no way for the programs to know what kind of data other columns (beyond the leading
x and y columns) contain. In such instances we must explicitly tell that we are feeding it data in the
specific geographic or calendar formats (floating point data are assumed by default). We specify the data
type via the –f option (which sets both input and output formats; use –fi and –fo to set input and output
separately). For instance, to specify that the the first two columns are longitude and latitude, and that the
third column (e.g., z) is absolute calendar time, we add –fi0x,1y,2T to the command line. For more details,
see the man page for the program you need to use.

4.11 Output Data Formats

The numerical output from programs can be binary (when –bo is used) or ASCII [Default]. In
the latter case the issue of formatting becomes important. provides extensive machinery for al-
lowing just about any imaginable format to be used on output. Analogous to the processing of input
data, several templates guide the formatting process. These are OUTPUT DATE FORMAT and OUT-
PUT CLOCK FORMAT for calendar-time coordinates, OUTPUT DEGREE FORMAT for geograph-
ical coordinates, and D FORMAT for generic floating point data. In addition, the user have control over
how columns are separated via the FIELD SEPARATOR parameter. Thus, as an example, it is possible to
create limited FORTRAN-style card records by setting D FORMAT to %7.3lf and FIELD SEPARATOR
to none [Default is tab].

4.12 PostScript Features

PostScript is a command language for driving graphics devices such as laser printers. It is ASCII text which
you can read and edit as you wish (assuming you have some knowledge of the syntax). We prefer this to
binary metafile plot systems since such files cannot easily be modified after they have been created.
programs also write many comments to the plot file which make it easier for users to orient themselves
should they need to edit the file (e.g., % Start of x-axis). All programs create PostScript code
by calling the pslib plot library (The user may call these functions from his/her own C or FORTRAN plot
programs. See the manual pages for pslib syntax). Although programs can create very individualized
plot code, there will always be cases not covered by these programs. Some knowledge of PostScript will
enable the user to add such features directly into the plot file. By default, will produce freeform
PostScript output with embedded printer directives. To produce Encapsulated PostScript (EPS) that can be
imported into graphics programs such as IslandDraw, CorelDraw, Illustrator or Freehand for further
embellishment, change the PAPER MEDIA setting in the .gmtdefaults4 file. See Appendix C and the
gmtdefaults man page for more details.

4.13 Specifying pen attributes

A pen in has three attributes: width, color, and texture. Most programs will accept pen attributes in
the form of an option argument, with commas separating the given attributes, e.g.,

–W[width[c � i � p � m]],[color],[texture[c � i � p � m]]

� Width is by default measured in units of the current device resolution (i.e., the value assigned to the
parameter DOTS PR INCH in your .gmtdefaults4 file). Thus, if the dpi is set to 300 this unit is
1/300th of an inch. Append c, i, p, or m to specify pen width in cm, inch, points (1/72 of an inch), or
meters, respectively. Note that a pen thickness of 5 will be of different physical width depending on
your dpi setting, whereas a thickness of 5p will always be 5/72 of an inch. Minimum-thickness pens
can be achieved by giving zero width, but the result is device-dependent. Finally, a few predefined
pen names can be used: default, faint, and � thin, thick, fat � [er � est]. Table 4.4 shows this list and the
corresponding pen widths.
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Pen name Width
faint 0
default 0.25p
thinnest 0.25p
thinner 0.50p
thin 0.75p
thick 1.0p
thicker 1.5p
thickest 2p
fat 3p
fatter 6p
fattest 12p

Table 4.4: GMT predefined pen widths.

� The color can be specified in five different ways:

1. Gray. Specify a gray shade in the range 0–255 (linearly going from black [0] to white [255]).

2. RGB. Specify r/g/b, each ranging from 0–255. Here 0/0/0 is black, 255/255/255 is white,
255/0/0 is red, etc.

3. HSV. Specify hue-saturation-value, with the former in the 0–360 degree range while the latter
two take on the range 0–110.

4. CMYK. Specify cyan/magenta/yellow/black, each ranging from 0–100%.

5. Name. Specify one of 663 valid color names as defined in the X11 color table11. A very small
yet versatile subset consists of the 29 choices white, black, and [light � dark] � red, orange, yellow,
green, cyan, blue, magenta, gray � grey, brown � .

� The texture attribute controls the appearance of the line. “.” yieds a dotted line, while a dashed pen is
requested with “-”. The lengths of dots and dashes are scaled relative to the pen width (dots has a
length that equals the pen width while dashes are 8 times as long; gaps between segments are 4 times
the pen width). For more detailed attributes including exact dimensions you may specify string:offset,
where string is a series of numbers separated by underscores. These numbers represent a pattern by
indicating the length of line segments and the gap between segments. The offset phase-shifts the
pattern from the beginning the line. For example, if you want a yellow line of width 0.1 cm that
alternates between long dashes (4 points), an 8 point gap, then a 5 point dash, then another 8 point
gap, with pattern offset by 2 points from the origin, specify –W0.1c,yellow,4 8 5 8:2p. In general,
the texture units can be specified in dpi units, cm, inch, points, or meters (see width discussion
above).

Table 4.5 contains additional examples of pen specifications suitable for, say, psxy.

Pen example Comment
–W0.5p Solid black line, 0.5 point thick
–Wthin,red,- Dashed, thin red line
–Wfat,. Fat dotted line [black]
–W0.1c,120-1-1 Green (in h-s-v) pen, 1 mm thick
–Wfaint,100/0/0/0,..- Very thin, cyan (in c/m/y/k), dot-dot-dashed line

Table 4.5: A few examples of pen specifications.

10For an overview of color systems such as HSV, see Appendix I.
11On most UNIX-type systems you can find the file rgb.txt in /usr/X11R6/lib/X11 or thereabouts, or use the command showrgb .
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4.14 Specifying area fill attributes

Many plotting programs will allow the user to draw filled polygons or symbols. The fill specification may
take two forms:

–Gfill
–Gpdpi/pattern[:Bcolor[Fcolor]]

fill: In the first case we may specify a gray shade (0–255), RGB color (r/g/b all in the 0–255 range), HSV
color (hue-saturation-value in the 0–360, 0–1, 0–1 range), CMYK color (cyan/magenta/yellow/black,
each ranging from 0–100%), or a valid color name; in that respect it is similar to specifying the pen
color settings (see pen color discussion under Section 4.13).

pattern: The second form allows us to use a predefined bit-image pattern. pattern can either be a number
in the range 1–90 or the name of a 1-, 8-, or 24-bit Sun raster file. The former will result in one
of the 90 predefined 64 x 64 bit-patterns provided with and reproduced in Appendix E. The
latter allows the user to create customized, repeating images using standard Sun rasterfiles12. The
dpi parameter sets the resolution of this image on the page; the area fill is thus made up of a series
of these “tiles”. Specifying dpi as 0 will result in highest resolution obtainable given the present
dpi setting in .gmtdefaults4. By specifying upper case –GP instead of –Gp the image will be bit-
reversed, i.e., white and black areas will be interchanged (only applies to 1-bit images or predefined
bit-image patterns). For these patterns and other 1-bit images one may specify alternative background
and foreground colors (by appending :Bcolor[Fcolor]) that will replace the default white and black
pixels, respectively. Setting one of the fore- or background colors to – yields a transparent image
where only the back- or foreground pixels will be painted.

Due to PostScript implementation limitations the rasterimages used with –G must be less than 146 x
146 pixels in size; for larger images see psimage. The format of Sun raster files is outlined in Appendix
B. Note that under PostScript Level 1 the patterns are filled by using the polygon as a clip path. Complex
clip paths may require more memory than the PostScript interpreter has been assigned. There is therefore
the possibility that some PostScript interpreters (especially those supplied with older laserwriters) will run
out of memory and abort. Should that occur we recommend that you use a regular grayshade fill instead of
the patterns. Installing more memory in your printer may or may not solve the problem!

Table 4.6 contains a few examples of fill specifications.

Fill example Comment
–Gblue Solid blue
–G120/80/35 Kind of brown, R/G/B-style
–G290-0.25-1 Digging pink, h-s-v – style
–GDarkOliveGreen1 One of those X11 colors
–Gp300/7 Simple diagonal hachure pattern in b/w at 300 dpi
–Gp300/7:Bred Same, but with red lines on white
–Gp300/7:BredF- Now the gaps between red lines are transparent
–Gp100/marble.ras Using user image of marble as the fill at 100 dpi

Table 4.6: A few examples of fill specifications.

4.15 Color palette tables

Several programs, such as those which read 2-D gridded data sets and create colored images or shaded
reliefs, need to be told what colors to use and over what z-range each color applies. This is the purpose

12Convert other graphics formats to Sun ras format using ImageMagick’s convert program.
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of the color palette table (cpt-file). These files may also be used by psxy and psxyz to plot color-filled
symbols. For most applications, you will simply create a cpt-file using the tool makecpt which will take
an existing color table and resample it to fit your chosen data range, or use grd2cpt to build a cpt-file
based on the data distribution in a given grid file. However, in some situations you will need to make a
cpt-file by hand or using text tools like awk or perl .

The colors may be specified either in the RGB- (red, green, blue), CMYK- (cyan, magenta, yellow,
black), or in the HSV-system (hue, saturation, value, and here the comment # COLOR MODEL = HSV
must be present in the cpt file since there are no other way to distinguish between HSV and RGB). Color
names can also be used. Using the RGB system13, the format of the cpt-file is:

z0 Rmin Gmin Bmin z1 Rmax Gmax Bmax [A]
. . .
zn

�
2 Rmin Gmin Bmin zn

�
1 Rmax Gmax Bmax [A]

Thus, for each “z-slice”, defined as the interval between two boundaries (e.g., z0 to z1), the color can
be constant (by letting Rmin = Rmax, Gmin = Gmax, and Bmin = Bmax) or a continuous, linear function of
z. The optional flag A is used to indicate annotation of the colorscale when plotted using psscale. The
optional A may be L, U, or B to select annotation of the lower, upper, or both limits of the particular z-slice.
However, the standard –B option can be used by psscale to affect annotation and ticking of colorscales.
The background color (for z-values �

z0), foreground color (for z-values � zn
�

1), and not-a-number (NaN)
color (for z-values = NaN) are all defined in the .gmtdefaults4 file, but can be overridden by the statements

B Rback Gback Bback

F R f ore G f ore B f ore

N Rnan Gnan Bnan

which can be inserted into the beginning or end of the cpt-file. If you prefer the HSV system, set the
.gmtdefaults4 parameter accordingly and replace red, green, blue with hue, saturation, value. Color palette
tables that contain grayshades only may replace the r/g/b triplets with a single grayshade in the 0–255
range. For CMYK, give four values in the 0–100 range. Both the min and max color specifications in one
z-slice must use the same color system, i.e., you cannot mix “red” and 0/255/100 on the same line.

A few programs (i.e., those that plot polygons such as grdview, psscale, and psxy) can accept
pattern fills instead of grayshades. You must specify the pattern as in Section 4.14 (no leading –G of
course), and only the first (low z) is used (we cannot interpolate between patterns). Finally, some programs
let you skip features whose z-slice in the cptfile has grayshades set to –. As an example, consider

30 p200/16 80 –
80 – 100 –
100 200 0 0 200 255 255 0
200 yellow 300 green

where slice 30 �
z

� 80 is painted with pattern # 16 at 200 dpi, slice 80 �
z

� 100 is skipped, slice
100 �

z
� 200 is painted in a range of dark red to yellow, whereas the slice 200 �

z
� 300 will linearly

yield colors from yellow to green, depending on the actual value of z.
Some programs like grdimage and grdview apply artificial illumination to achieve shaded relief

maps. This is typically done by finding the directional gradient in the direction of the artificial light source
and scaling the gradients to have approximately a normal distribution on the interval [-1,+1]. These intensi-
ties are used to add “white” or “black” to the color as defined by the z-values and the cpt-file. An intensity
of zero leaves the color unchanged. Higher values will brighten the color, lower values will darken it,
all without changing the original hue of the color (see Appendix I for more details). The illumination is
decoupled from the data grd-file in that a separate grdfile holding intensities in the [-1,+1] range must be
provided. Such intensity files can be derived from the data grdfile using grdgradient and modified with
grdhisteq, but could equally well be a separate data set. E.g., some side-scan sonar systems collect both
bathymetry and backscatter intensities, and one may want to use the latter information to specify the illumi-
nation of the colors defined by the former. Similarly, one could portray magnetic anomalies superimposed
on topography by using the former for colors and the latter for shading.

13For CMYK the format obviously involves two extra columns.
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4.16 Character escape sequences

For annotation labels or textstrings plotted with pstext, provides several escape sequences that allow
the user to temporarily switch to the symbol font, turn on sub- or superscript, etc., within words. These
conditions are toggled on/off by the escape sequence @x, where x can be one of several types. The escape
sequences recognized in are listed in Table 4.7.

Code Effect
@˜ Turns symbol font on or off
@%fontno% Switches to another font; @%% resets to previous font
@+ Turns superscript on or off
@- Turns subscript on or off
@# Turns small caps on or off
@! Creates one composite character of the next two characters
@@ Prints the @ sign itself

Table 4.7: GMT text escape sequences.

Shorthand notation for a few special European characters has also been added (Table 4.8):

Code Effect Code Effect
@E Æ @e æ
@O Ø @o ø
@A Å @a å
@C Ç @c ç
@N Ñ @n ñ
@U Ü @u ü
@s ß

Table 4.8: Shortcuts for some European characters.

PostScript fonts used in may be re-encoded to include several accented characters used in many
European languages. To access these, you must specify the full octal code � xxx allowed for your choice of
character encodings determined by the CHAR ENCODING setting described in the gmtdefaults man
page. Only the special characters belonging to a particular encoding will be available. Many characters not
directly available by using single octal codes may be constructed with the composite character mechanism
@!.

Some examples of escape sequences and embedded octal codes in strings using the Standard+
encoding:

2@˜p@˜r@+2@+h@-0@- E\363tv\363s = 2πr2h0 Eötvös
10@+-3 @Angstr@om = 10 �

3 Ångstrøm
Se@nor Gar@con = Señor Garçon
M@!\305anoa stra@se = Manoa straße
A@\#cceleration@\# (ms@+-2@+) = ACCELERATION (MS �

2)

The option in pstext to draw a rectangle surrounding the text will not work for strings with escape
sequences. A chart of characters and their octal codes is given in Appendix F.

4.17 Embedded grdfile format specifications

has the ability to read more than one grdfile format. As distributed, now recognizes 13 prede-
fined file formats. These are
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0. netCDF 4-byte float format [Default]

1. Native binary single precision floats in scanlines with leading grd header

2. Native binary short integers in scanlines with leading grd header

3. 8-bit standard Sun rasterfile (colormap ignored)

4. Native binary unsigned char in scanlines with leading grd header

5. Native binary bits in scanlines with leading grd header

6. Native binary “surfer” grid files

7. netCDF 1-byte byte format

8. netCDF 1-byte char format

9. netCDF 2-byte int format

10. netCDF 4-byte int format

11. netCDF 8-byte double format

12. NOAA/NGDC MGG grid format

In addition, users with some C-programming experience may add their own read/write functions and
link them with the library to extend the number of predefined formats. Technical information on this
topic can be found in the source file gmt customio.c.

Because of these new formats it is sometimes necessary to provide more than simply the name of the
file on the command line. For instance, a short integer file may use a unique value to signify an empty node
or NaN, and the data may need translation and scaling prior to use. Therefore, all programs that read
or write grdfiles will decode the given filename as follows:

name[=id[/scale/offset[/nan]]]

where everything in brackets is optional. If you only use the default netCDF file format then no options are
needed: just continue to pass the name of the grdfile. However, if you use another format you must append
the =id string, where id is the format id number listed above. In addition, should you want to multiply the
data by a scale factor, then add a constant offset you may append the /scale/offset modifier. Finally, if you
need to indicate that a certain data value should be interpreted as a NaN (not-a-number) you may append
the /nan suffix to the scaling string (it cannot go by itself; note the nesting of the brackets!).

Some of the grd formats allow writing to standard output and reading from standard input which means
you can connect programs that operate on grdfiles with pipes, thereby speeding up execution and
eliminating the need for large, intermediate grdfiles. You specify standard input/output by leaving out the
filename entirely. That means the “filename” will begin with “=id ” since the default netCDF format
does not allow piping (due to the design of netCDF).

Everything looks more obvious after a few examples:

1. To write a binary float grd file, specify the name as my file.grd=1.

2. To read a short integer grd file, multiply the data by 10 and then add 32000, but first let values that
equal 32767 be set to NaN, use the filename my file.grd=2/10/32000/32767.

3. To read a 8-bit standard Sun rasterfile (with values in the 0–255 range) and convert it to a � 1 range,
give the name as rasterfile=3/7.84313725e-3/-1 (i.e., 1/127.5).

4. To write a short integer grd file to standard output after subtracting 32000 and dividing its values by
10, give filename as =2/0.1/-3200.
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Programs that both read and/or write more than one grdfile may specify different formats and/or scaling
for the files involved. The only restriction with the embedded grd specification mechanism is that no
grdfiles may actually use the “=” character as part of their name (presumably, a small sacrifice).

One can also define special file suffixes to imply a specific file format; this approach represents a more
intuitive and user-friendly way to specify the various file formats. The user may create a file called .gmt io
in the home directory and define any number of custom formats. The following is an example of a .gmt io
file:

# GMT i/o shorthand file
# It can have any number of comment lines like this one anywhere
# suffix format id scale offset NaN Comments
grd 0 - - - Default format
b 1 - - - Native binary floats
i2 2 - - 32767 2-byte integers
ras 3 - - - Sun rasterfiles
byte 4 - - 255 1-byte grids
bit 5 - - - 0 or 1 grids
mask 5 - - 0 1 or NaN masks
faa 2 0.1 - 32767 Gravity in 0.1 mGal

These suffices can be anything that make sense to the user. To activate this mechanism, set parameter
GRIDFILE SHORTHAND to TRUE in your .gmtdefaults4 file. Then, using the filename stuff.i2 is
equivalent to saying stuff.i2=2/1/0/32767, and the filename wet.mask means wet.mask=5/1/0/0. For a file
intended for masking, i.e., the nodes are either 1 or NaN, the bit or mask format file may as small as 1/32
the size of the corresponding grd format file.

4.18 The NaN data value

For a variety of data processing and plotting tasks there is a need to acknowledge that a data point is
missing or unassigned. In the “old days” such information was passed by letting a value like -9999.99 take
on the special meaning of “this is not really a value, it is missing”. The problem with this scheme is that
-9999.99 (or any other floating point value) may be a perfectly reasonable data value and in such a scenario
would be skipped. The solution adopted in is to use the IEEE concept Not-a-Number (NaN) for this
purpose. Mathematically, a NaN is what you get if you do an undefined mathematical operation like 0 � 0.
This value is stored with a particular bit pattern defined by IEEE so that special action can be taken when it
is encountered by programs. In particular, a library function called isnan is used to test if a floating point
is a NaN. uses these tests extensively to determine if a value is suitable for plotting or processing (if
a NaN is used in a calculation the result would become NaN as well). Data points whose value is NaN are
not normally plotted (or plotted with the special NaN color given in .gmtdefaults4). Several tools such as
xyz2grd, gmtmath, and grdmath can convert user data to NaN and vice versa, thus facilitating arbitrary
masking and clipping of data sets. Note that a few computers do not have native IEEE hardware support.
At this point, this applies to some of the Cray super-computers. Users on such machines may have to adopt
the old ‘-9999.99” scheme to achieve the desired results.
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5. GMT Coordinate Transformations

programs read real-world coordinates and convert them to positions on a plot. This is achieved by
selecting one of several coordinate transformations or projections. We distinguish between three sets of
such conversions:

� Cartesian coordinate transformations

� Polar coordinate transformations

� Map coordinate transformations

The next chapter will be dedicated to map projections in its entirety. Meanwhile, the present
chapter will summarize the properties of the Cartesian and Polar coordinate transformations available in

, list which parameters define them, and demonstrate how they are used to create simple plot axes. We
will mostly be using psbasemap (and occasionally psxy) to demostrate the various transformations. Our
illustrations may differ from those you reproduce with the same commands because of different settings in
our .gmtdefaults4 file.) Finally, note that while we will specify dimensions in inches (by appending i), you
may want to use cm (c), meters (m), or points (p) as unit instead (see the gmtdefaults man page).

5.1 Cartesian Transformations

Cartesian coordinate transformations come in three flavors:

� Linear coordinate transformation

� Log10 coordinatetransformation

� Power (exponential) coordinate transformation

These transformations convert input coordinates
�
x � y � to locations

�
x � � y � � on a plot. There is no cou-

pling between x and y (i.e., x � � f
�
x � and y � � f

�
y � ); it is a one-dimensional projection. Hence, we may

use separate transformations for the x-, y-, and z-axes. Below, we will use the expression u � � f
�
u � , where

u is either x or y (or z for 3-D plots). The coefficients in f
�
u � depend on the desired plot size (or scale), the

chosen
�
x � y � domain, and the nature of f itself.

Two subsets of linear will be discussed separately; these are a polar (cylindrical) projection and a linear
projection applied to geographic coordinates (with a 360 degree periodicity in the x-coordinate). We will
show examples of all of these projections using dummy data sets created with gmtmath, a “Reverse Polish
Notation” (RPN) calculator that operates on or creates table data:

gmtmath -T0/100/1 T SQRT = sqrt.d
gmtmath -T0/100/10 T SQRT = sqrt.d10

5.1.1 Cartesian Linear Transformation (–Jx –JX)

There are in fact three different uses of the Cartesian linear transformation, each associated with specific
command line options. The different manifestations result from specific properties of three kinds of data:

1. Regular floating point coordinates

2. Geographic coordinates

3. Calendar time coordinates
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Figure 5.1: Linear transformation of Cartesian coordinates.

Regular floating point coordinates

Selection of the Cartesian linear transformation with regular floating point coordinates will result in a sim-
ple linear scaling u � � au

�
b of the input coordinates. The projection is defined by stating

� scale in inches/unit (–Jx) or axis length in inches (–JX)

If the y-scale or y-axis length is different from that of the x-axis (which is most often the case), separate
the two scales (or lengths) by a slash, e.g., –Jx0.1i/0.5i or –JX8i/5i. Thus, our y � �

x data sets will plot
as shown in Figure 5.1.

The complete commands given to produce this plot were

psxy -R0/100/0/10 -JX3i/1.5i -Ba20f10g10/a2f1g2WSne -W1p,- -P -K sqrt.d > GMT_linear.ps
psxy -R -JX -St0.075i -Glightgray -W -O sqrt.d10 >> GMT_linear.ps

Normally, the user’s x-values will increase to the right and the y-values will increase upwards. It should
be noted that in many situations it is desirable to have the direction of positive coordinates be reversed. For
example, when plotting depth on the y-axis it makes more sense to have the positive direction downwards.
All that is required to reverse the sense of positive direction is to supply a negative scale (or axis length).

Geographic coordinates

While the Cartesian linear projection is primarily designed for regular floating point x,y data, it is sometimes
necessary to plot geographical data in a linear projection. This poses a problem since longitudes have a
360

�

periodicity. therefore needs to be informed that it has been given geographical data although a
linear transformation has been chosen. We do so by appending a d (for degrees) to the end of the –Jx (or
–JX) option. As an example, we want to plot a crude world map centered on 125

�

E. Our command will be

gmtset GRID_CROSS_SIZE_PRIMARY 0.1i BASEMAP_TYPE FANCY PLOT_DEGREE_FORMAT ddd:mm:ssF
pscoast -R-55/305/-90/90 -Jx0.014id -B60g30f15/30g30f15WSen -Dc -A1000 -Glightgray -W0.25p -P \

> GMT_linear_d.ps
gmtset GRID_CROSS_SIZE_PRIMARY 0

with the result reproduced in Figure 5.2.

Calendar time coordinates

Several particular issues arise when we seek to make linear plots using calendar date/time as the input
coordinates. As far as setting up the coordinate transformation we must indicate whether our input data
have absolute time coordinates or relative time coordinates. For the former we append T after the axis
scale (or width), while for the latter we append t. However, for command line arguments we may specify
time using either absolute or relative time. An absolute time entry must be given as [date]T[clock] (with
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Figure 5.2: Linear transformation of map coordinates.
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Figure 5.3: Linear transformation of calendar coordinates.
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date given as yyyy[-mm[-dd]], yyyy[-jjj], or yyyy[-Www[-d]], and clock using the hh[:mm[:ss[.xxx]]] 24-
hour clock format) whereas the relative time is simply given as the units of time since the epoch (see
TIME SYSTEM for information on specifying the time unit and the epoch). As a simple example, we
will make a plot of a school week calendar (Figure 5.3).

gmtset PLOT_DATE_FORMAT o TIME_WEEK_START Sunday PLOT_CLOCK_FORMAT -hham TIME_FORMAT_PRIMARY full
psbasemap -R2001-9-24T/2001-9-29T/T07:0/T15:0 -JX4T/-2T -Ba1Kf1kg1d/a1Hg1hWsNe -P > GMT_linear_cal.ps

5.1.2 Cartesian Logarithmic projection
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Figure 5.4: Logarithmic transformation of x-coordinates.

The log10 transformation is simply u � � a log10
�
u � �

b and is selected by appending an l (lower case
L) immediately following the scale (or axis length) value. Hence, to produce a plot in which the x-axis is
logarithmic (the y-axis remains linear, i.e., a semilog plot), try

psxy -R1/100/0/10 -Jx1.5il/0.15i -B2g3/a2f1g2WSne -W1t2_2:0p -P -K -H sqrt.d > GMT_log.ps
psxy -R -Jx -Ss0.075i -Gblack -W -O -H sqrt.d10 >> GMT_log.ps

Note that if x- and y-scaling are different and a log10-log10 plot is desired, the l must be appended twice:
Once after the x-scale (before the /) and once after the y-scale.

5.1.3 Cartesian Power projection
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Figure 5.5: Exponential or power transformation of x-coordinates.

This projection uses u � � aub �
c and allows us to explore exponential relationships like xp versus yq.

While p and q can be any values, we will select p � 0 � 5 and q � 1 which means we will plot x versus
�

x.
We indicate this scaling by appending a p (lower case P) followed by the desired exponent, in our case
0.5. Since q � 1 we do not need to specify p1 since it is identical to the linear transformation. Thus our
command becomes
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Figure 5.6: Polar (Cylindrical) transformation of (θ � r) coordinates.

psxy -R0/100/0/10 -Jx0.3ip0.5/0.15i -Ba1p/a2f1WSne -W1p -P -K sqrt.d > GMT_pow.ps
psxy -R -Jx -Sc0.075i -Gwhite -W -O sqrt.d10 >> GMT_pow.ps

5.2 Linear Projection with Polar (θ � r) Coordinates (–Jp –JP)

This transformation converts polar coordinates (angle θ and radius r) to positions on a plot. Now x � �
f

�
θ � r � and y � � g

�
θ � r � , hence it is similar to a regular map projection because x and y are coupled and

x (i.e., θ) has a 360
�

periodicity. With input and output points both in the plane it is a two-dimensional
projection. The transformation comes in two flavors:

1. Normally, θ is understood to be directions counter-clockwise from the horizontal axis, but we may
choose to specify an angular offset [whose default value is zero]. We will call this offset θ0. Then,
x � � f

�
θ � r � � ar cos

�
θ � θ0 � �

b and y � � g
�
θ � r � � ar sin

�
θ � θ0 � �

c.

2. Alternatively, θ can be interpreted to be azimuths clockwise from the vertical axis, yet we may again
choose to specify the angular offset [whose default value is zero]. Then, x � � f

�
θ � r � � ar cos

�
90 ��

θ � θ0 � � �
b and y � � g

�
θ � r � � ar sin

�
90 �

�
θ � θ0 � � �

c.

Consequently, the polar transformation is defined by providing

� scale in inches/unit (–Jp) or full width of plot in inches (–JP)

� Optionally, insert a after p � P to indicate CW azimuths rather than CCW directions

� Optionally, append /origin in degrees to indicate an angular offset [0]

As an example of this projection we will create a gridded data set in polar coordinates z
�
θ � r � � r2 �

cos4θ using grdmath, a RPN calculator that operates on or creates grdfiles.

grdmath -R0/360/2/4 -I6/0.1 X 4 MUL PI MUL 180 DIV COS Y 2 POW MUL = test.grd
grdcontour test.grd -JP3i -B30Ns -P -C2 -S4 --PLOT_DEGREE_FORMAT=+ddd > GMT_polar.ps
rm -f test.grd



CHAPTER 5. GMT COORDINATE TRANSFORMATIONS 38

We used grdcontour to make a contour map of this data. Because the data file only contains values
with 2

�
r

�
4, a donut shaped plot appears in Figure 5.6.



6. GMT Map Projections

implements 25 different map projections. They all project the input coordinates longitude and latitude
to positions on a map. In general, x � � f

�
x � y � z � and y � � g

�
x � y � z � , where z is implicitly given as the radial

vector length to the
�
x � y � point on the chosen ellipsoid. The functions f and g can be quite nasty and we

will refrain from presenting details in this document. The interested read is referred to Snyder [1987]1. We
will mostly be using the pscoast command to demonstrate each of the projections. map projections
are grouped into four categories depending on the nature of the projection. The groups are

1. Conic map projections

2. Azimuthal map projections

3. Cylindrical map projections

4. Miscellaneous projections

Because x and y are coupled we can only specify one plot-dimensional scale, typically a map scale (for
lower-case map projection code) or a map width (for upper- case map projection code). However, in some
cases it would be more practical to specify map height instead of width, while in other situations it would be
nice to set either the shortest or longest map dimension. Users may select these alternatives by appending
a character code to their map dimension. To specify map height, append h to the given dimension; to select
the minimum map dimension, append -, whereas you may append + to select the maximum map dimension.
Without the modifier the map width is selected by default.

6.1 Conic Projections

6.1.1 Albers Conic Equal-Area Projection (–Jb –JB)

This projection, developed by Albers in 1805, is predominantly used to map regions of large east-west
extent, in particular the United States. It is a conic, equal-area projection, in which parallels are unequally
spaced arcs of concentric circles, more closely spaced at the north and south edges of the map. Meridians,
on the other hand, are equally spaced radii about a common center, and cut the parallels at right angles.
Distortion in scale and shape vanishes along the two standard parallels. Between them, the scale along
parallels is too small; beyond them it is too large. The opposite is true for the scale along meridians. To
define the projection in you need to provide the following information:

� Longitude and latitude of the projection center

� Two standard parallels

� Map scale in inch/degree or 1:xxxxx notation (–Jb), or map width (–JB)

Note that you must include the “1:” if you choose to specify the scale that way. E.g., you can say 0.5
which means 0.5 inch/degree or 1:200000 which means 1 inch on the map equals 200,000 inches along
the standard parallels. The projection center defines the origin of the rectangular map coordinates. As an
example we will make a map of the region near Taiwan. We choose the center of the projection to be at
125

�

E/20
�

N and 25
�

N and 45
�

N as our two standard parallels. We desire a map that is 5 inches wide.
The complete command needed to generate the map below is therefore given by:

gmtset GRID_CROSS_SIZE_PRIMARY 0
pscoast -R110/140/20/35 -JB125/20/25/45/5i -B10g5 -Dl -Glightgray -W0.25p -A250 -P > GMT_albers.ps

1Snyder, J. P., 1987, Map Projections A Working Manual, U.S. Geological Survey Prof. Paper 1395.

39
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Figure 6.1: Albers equal-area conic map projection

6.1.2 Lambert Conic Conformal Projection (–Jl –JL)

This conic projection was designed by Lambert (1772) and has been used extensively for mapping of
regions with predominantly east-west orientation, just like the Albers projection. Unlike the Albers pro-
jection, Lambert’s conformal projection is not equal-area. The parallels are arcs of circles with a common
origin, and meridians are the equally spaced radii of these circles. As with Albers projection, it is only the
two standard parallels that are distortion-free. To select this projection in you must provide the same
information as for the Albers projection, i.e.

� Longitude and latitude of the projection center

� Two standard parallels

� Map scale in inch/degree or 1:xxxxx notation (–Jl), or map width (–JL)

The Lambert conformal projection has been used for basemaps for all the 48 contiguous States with the
two fixed standard parallels 33

�

N and 45
�

N. We will generate a map of the continental USA using these
parameters. Note that with all the projections you have the option of selecting a rectangular border rather
than one defined by meridians and parallels. Here, we choose the regular WESN region, a “fancy” basemap
frame, and use degrees west for longitudes. The generating commands used were

gmtset BASEMAP_TYPE FANCY PLOT_DEGREE_FORMAT ddd:mm:ssF GRID_CROSS_SIZE_PRIMARY 0.05i
pscoast -R-130/-70/24/52 -Jl-100/35/33/45/1:50000000 -B10g5 -Dl -N1/1p -N2/0.5p -A500 -Glightgray \

-W0.25p -P > GMT_lambert_conic.ps
gmtset GRID_CROSS_SIZE_PRIMARY 0

The choice for projection center does not affect the projection but it indicates which meridian (here
100

�

W) will be vertical on the map. The standard parallels were originally selected by Adams to provide a
maximum scale error between latitudes 30.5

�

N and 47.5
�

N of 0.5–1%. Some areas, like Florida, experience
scale errors of up to 2.5%.

6.1.3 Equidistant Conic Projection (–Jd –JD)

The equidistant conic projection was described by the Greek philosopher Claudius Ptolemy about A.D.
150. It is neither conformal or equal-area, but serves as a compromise between them. The scale is true
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Figure 6.2: Lambert conformal conic map projection

along all meridians and the standard parallels. To select this projection in you must provide the same
information as for the other conic projection, i.e.

� Longitude and latitude of the projection center

� Two standard parallels

� Map scale in inch/degree or 1:xxxxx notation (–Jd), or map width (–JD)

The equidistant conic projection is often used for atlases with maps of small countries. As an example,
we generate a map of Cuba:

gmtset PLOT_DEGREE_FORMAT ddd:mm:ssF GRID_CROSS_SIZE_PRIMARY 0.05i
pscoast -R-88/-70/18/24 -JD-79/21/19/23/4.5i -B5g1 -Di -N1/1p -Glightgray \

-W0.25p -P > GMT_equidistant_conic.ps
gmtset GRID_CROSS_SIZE_PRIMARY 0
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Figure 6.3: Equidistant conic map projection
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6.2 Azimuthal Projections

6.2.1 Lambert Azimuthal Equal-Area (–Ja –JA)

This projection was developed by Lambert in 1772 and is typically used for mapping large regions like
continents and hemispheres. It is an azimuthal, equal-area projection, but is not perspective. Distortion is
zero at the center of the projection, and increases radially away from this point. To define this projection in

you must provide the following information:

� Longitude and latitude of the projection center

� Scale as 1:xxxxx or as radius/latitude where radius is distance on map in inches from projection center
to an oblique latitude (–Ja), or map width in inches (–JA).

Two different types of maps can be made with this projection depending on how the region is specified.
We will give examples of both types.

Rectangular map

In this mode we define our region by specifying the longitude/latitude of the lower left and upper right
corners instead of the usual west, east, south, north boundaries. The reason for specifying our area this
way is that for this and many other projections, lines of equal longitude and latitude are not straight lines
and are thus poor choices for map boundaries. Instead we require that the map boundaries be rectangular
by defining the corners of a rectangular map boundary. Using 0

�

E/40
�

S (lower left) and 60
�

E/10
�

S (upper
right) as our corners we try

gmtset PLOT_DEGREE_FORMAT ddd:mm:ssF GRID_CROSS_SIZE_PRIMARY 0
pscoast -R0/-40/60/-10r -JA30/-30/4.5i -B30g30/15g15 -Dl -A500 -Glightgray -W0.25p -P > \

GMT_lambert_az_rect.ps

0˚ 30˚E
30˚E

60
˚E

30˚S
30˚S

15˚S
15˚S

Figure 6.4: Rectangular map using the Lambert azimuthal equal-area projection.

Note that an “r” is appended to the –R option to inform that the region has been selected using
the rectangle technique, otherwise it would try to decode the values as west, east, south, north and report
an error since ’east’

�
’west’.
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Hemisphere map

Here, you must specify the world as your region (–R0/360/-90/90). E. g., to obtain a hemisphere view that
shows the Americas, try

pscoast -Rg -JA280/30/3.5i -B30g30/15g15 -Dc -A1000 -Gblack -P > GMT_lambert_az_hemi.ps

Figure 6.5: Hemisphere map using the Lambert azimuthal equal-area projection.

To geologists, the Lambert azimuthal equal-area projection (with origin at 0
�

/0
�

) is known as the equal-
area (Schmidt) stereonet and used for plotting fold axes, fault planes, and the like. An equal-angle (Wulff)
stereonet can be obtained by using the stereographic projection (discussed later). The stereonets produced
by these two projections appear below.

SCHMIDT WULFF

Figure 6.6: Equal-Area (Schmidt) and Equal-Angle (Wulff) stereo nets.
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6.2.2 Stereographic Equal-Angle Projection (–Js –JS)

This is a conformal, azimuthal projection that dates back to the Greeks. Its main use is for mapping the
polar regions. In the polar aspect all meridians are straight lines and parallels are arcs of circles. While this
is the most common use it is possible to select any point as the center of projection. The requirements are

� Longitude and latitude of the projection center.

� Scale as 1:xxxxx (true scale at pole), slat/1:xxxxx (true scale at standard parallel slat), or radius/latitude
where radius is distance on map in inches from projection center to a particular [possibly oblique]
latitude (–Js), or simply map width (–JS).

A default map scale factor of 0.9996 will be applied by default (allthough you may change this with
MAP SCALE FACTOR). However, the setting is ignored when a standard parallel has been specified
since the scale is then implicitly given. We will look at two different types of maps.

Polar Stereographic Map

In our first example we will let the projection center be at the north pole. This means we have a polar
stereographic projection and the map boundaries will coincide with lines of constant longitude and latitude.
An example is given by

gmtset PLOT_DEGREE_FORMAT ddd:mm:ss
pscoast -R-30/30/60/72 -Js0/90/4.5i/60 -Ba10g5/5g5 -Dl -A250 -Gblack -P > GMT_stereographic_polar.ps
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Figure 6.7: Polar stereographic conformal projection.

Rectangular Stereographic Map

As with Lambert’s azimuthal equal-area projection we have the option to use rectangular boundaries rather
than the wedge-shape typically associated with polar projections. This choice is defined by selecting two
points as corners in the rectangle and appending an “r” to the –R option. This command produces a map
as presented in Figure 6.8:

gmtset PLOT_DEGREE_FORMAT ddd:mm:ss OBLIQUE_ANNOTATION 30
pscoast -R-25/59/70/72r -JS10/90/11c -B30g10/5g5 -Dl -A250 -Glightgray -W.25p -P > \

GMT_stereographic_rect.ps
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Figure 6.8: Polar stereographic conformal projection with rectangular borders.

General Stereographic Map

In terms of usage this projection is identical to the Lambert azimuthal equal-area projection. Thus, one
can make both rectangular and hemispheric maps. Our example shows Australia using a projection pole at
130E/30

�

S. The command used was

gmtset PLOT_DEGREE_FORMAT ddd:mm:ss OBLIQUE_ANNOTATION 0
pscoast -R100/-40/160/-10r -JS130/-30/4i -B30g10/15g15 -Dl -A500 -Gblack -P \

> GMT_stereographic_general.ps
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Figure 6.9: General stereographic conformal projection with rectangular borders.

By choosing 0
�

/0
�

as the pole, we obtain the conformal stereonet presented next to its equal-area cousin
in the Section 6.2.1 on the Lambert azimuthal equal-area projection (Figure 6.6).
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6.2.3 Orthographic Projection (–Jg –JG)

The orthographic azimuthal projection is a perspective projection from infinite distance. It is therefore
often used to give the appearance of a globe viewed from space. As with Lambert’s equal-areal and the
stereographic projection, only one hemisphere can be viewed at any time. The projection is neither equal-
area nor conformal, and much distortion is introducted near the edge of the hemisphere. The directions
from the center of projection are true. The projection was known to the Egyptians and Greeks more than
2,000 years ago. Because it is mainly used for pictoral views at a small scale, only the spherical form is
necessary.

To specify the orthographic projection you must supply

� Longitude and latitude of the projection center.

� Scale as 1:xxxxx or as radius/latitude where radius is distance on map in inches from projection center
to a particular [possibly oblique] latitude (–Jg), or map width (–JG).

Our example of a perspective view centered on 75
�

W/40
�

N can therefore be generated by the following
pscoast command:

pscoast -Rg -JG-75/41/4.5i -B15g15 -Dc -A5000 -Gblack -P > GMT_orthographic.ps

Figure 6.10: Hemisphere map using the Orthographic projection.
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6.2.4 Azimuthal Equidistant Projection (–Je –JE)

The most noticeable feature of this azimuthal projection is the fact that distances measured from the center
are true. Therefore, a circle about the projection center defines the locus of points that are equally far away
from the plot origin. Furthermore, directions from the center are also true. The projection, in the polar
aspect, is at least several centuries old. It is a useful projection for a global view of locations at various or
identical distance from a given point (the map center).

To specify the azimuthal equidistant projection you must supply:

� Longitude and latitude of the projection center.

� Scale as 1:xxxxx or as radius/latitude where radius is distance on map in inches from projection center
to a particular [possibly oblique] latitude (–Je), or map width (–JE).

Our example of a global view centered on 100
�

W/40
�

N can therefore be generated by the following
pscoast command. Note that the antipodal point is 180

�

away from the center, but in this projection this
point plots as the entire map perimeter:

pscoast -Rg -JE-100/40/4.5i -B15g15 -Dc -A10000 -Glightgray -W0.25p -P > GMT_az_equidistant.ps

Figure 6.11: World map using the equidistant azimuthal projection.

6.2.5 Gnomonic Projection (–Jf –JF)

The Gnomonic azimuthal projection is a perspective projection from the center onto a plane tangent to
the surface. Its origin goes back to the old Greeks who used it for star maps almost 2500 years ago. The
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projection is neither equal-area nor conformal, and much distortion is introducted near the edge of the
hemisphere; in fact, less than a hemisphere may be shown around a given center. The directions from the
center of projection are true. Great circles project onto straight lines. Because it is mainly used for pictoral
views at a small scale, only the spherical form is necessary.

To specify the Gnomonic projection you must supply:

� Longitude and latitude of the projection center.

� The horizon, i.e., the number of degrees from the center to the edge. This must be � 90
�

.

� Scale as 1:xxxxx or as radius/latitude where radius is distance on map in inches from projection center
to a particular [possibly oblique] latitude (–Jf), or map width (–JF).

Using a horizon of 60
�

, our example of this projection centered on 120
�

W/35
�

N can therefore be
generated by the following pscoast command:

pscoast -Rg -JF-120/35/60/4.5i -Bg15 -Dc -A10000 -Glightgray -W0.25p -P > GMT_gnomonic.ps

Figure 6.12: Gnomonic azimuthal projection.

TM
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6.3 Cylindrical Projections

6.3.1 Mercator Projection (–Jm –JM)

Probably the most famous of the various map projections, the Mercator projection takes its name from
Mercator who presented it in 1569. It is a cylindrical, conformal projection with no distortion along the
equator. A major navigational feature of the projection is that a line of constant azimuth is straight. Such a
line is called a rhumb line or loxodrome. Thus, to sail from one point to another one only had to connect
the points with a straight line, determine the azimuth of the line, and keep this constant course for the entire
voyage2. The Mercator projection has been used extensively for world maps in which the distortion towards
the polar regions grows rather large, thus incorrectly giving the impression that, for example, Greenland is
larger than South America. In reality, the latter is about eight times the size of Greenland. Also, the Former
Soviet Union looks much bigger than Africa or South America. One may wonder whether this illusion has
had any influence on U.S. foreign policy.

In the regular Mercator projection, the cylinder touches the globe along the equator. Other orientations
like vertical and oblique give rise to the Transverse and Oblique Mercator projections, respectively. We
will discuss these generalizations following the regular Mercator projection.

The regular Mercator projection requires a minimum of parameters. To use it in programs you
supply this information (the first two items are optional and have defaults):

� Central meridian [Middle of your map]

� Standard parallel for true scale [Equator]

� Scale along the equator in inch/degree or 1:xxxxx (–Jm), or map width (–JM)

Our example presents a world map at a scale of 0.012 inch pr degree which will give a map 4.32 inch
wide. It was created with the command:

gmtset PLOT_DEGREE_FORMAT ddd:mm:ss BASEMAP_TYPE fancy
pscoast -R0/360/-70/70 -Jm1.2e-2i -Ba60f30/a30f15 -Dc -A5000 -Gblack -P > GMT_mercator.ps
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Figure 6.13: Simple Mercator map.

While this example is centered on the Dateline, one can easily choose another configuration with the
–R option. A map centered on Greenwich would specify the region with -R-180/180/-70/70.

2This is, however, not the shortest distance. It is given by the great circle connecting the two points.



CHAPTER 6. GMT MAP PROJECTIONS 50

6.3.2 Transverse Mercator (–Jt –JT)

The transverse Mercator was invented by Lambert in 1772. In this projection the cylinder touches a merid-
ian along which there is no distortion. The distortion increases away from the central meridian and goes to
infinity at 90

�

from center. The central meridian, each meridian 90
�

away from the center, and equator are
straight lines; other parallels and meridians are complex curves. The projection is defined by specifying:

� The central meridian

� The latitude of origin

� Scale along the equator in inch/degree or 1:xxxxx (–Jt), or map width (–JT)

The optional latitude of origin defaults to Equator if not specified. Although defaulting to 1, you can
change the map scale factor via the MAP SCALE FACTOR parameter. Our example shows a transverse
Mercator map of south-east Europe and the Middle East with 35

�

E as the central meridian:

pscoast -R20/30/50/45r -Jt35/0.18i -B10g5 -Dl -A250 -Glightgray -W0.25p -P > GMT_transverse_merc.ps
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30˚

30˚

40˚

40˚

40˚
40˚

Figure 6.14: Rectangular Transverse Mercator map.

The transverse Mercator can also be used to generate a global map—the equivalent of the 360
�

Mercator
map. Using the command

pscoast -R0/360/-80/80 -JT330/-45/3.5i -B30g15/15g15WSne -Dc -A2000 -Gblack -P > GMT_TM.ps

we made the map illustrated in Figure 6.15. Note that when a world map is given (indicated by –
R0/360/s/n), the arguments are interpreted to mean oblique degrees, i.e., the 360

�

range is understood
to mean the extent of the plot along the central meridian, while the “south” and “north” values represent
how far from the central longitude we want the plot to extend. These values correspond to latitudes in the
regular Mercator projection and must therefore be less than 90 degrees.
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Figure 6.15: A global Transverse Mercator map.

6.3.3 Universal Transverse Mercator UTM (–Ju –JU)

A particular subset of the transverse Mercator is the Universal Transverse Mercator (UTM) which was
adopted by the US Army for large-scale military maps. Here, the globe is divided into 60 zones between
84

�

S and 84
�

N, most of which are 6
�

wide. Each of these UTM zones have their unique central meridian.
implements both the transverse Mercator and the UTM projection. When selecting UTM you must

specify:

� UTM zone (1–60). Use negative value for zones in the southern hemisphere

� Scale along the equator in inch/degree or 1:xxxxx (–Ju), or map width (–JU)

In order to minimize the distortion in any given zone, a scale factor of 0.9996 has been factored into
the formulae. (allthough a standard, you can change this with MAP SCALE FACTOR). This makes the
UTM projection a secant projection and not a tangent projection like the transverse Mercator above. The
scale only varies by 1 part in 1,000 from true scale at equator. The ellipsoidal projection expressions are
accurate for map areas that extend less than 10

�

away from the central meridian. For larger regions we use
the conformal latitude in the general spherical formulae instead.

6.3.4 Oblique Mercator (–Jo –JO)

Oblique configurations of the cylinder give rise to the oblique Mercator projection. It is particularly useful
when mapping regions of large lateral extent in an oblique direction. Both parallels and meridians are
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complex curves. The projection was developed in the early 1900s by several workers. Several parameters
must be provided to define the projection. offers three different definitions:

1. Option –Joa or –JOa:

� Longitude and latitude of projection center
� Azimuth of the oblique equator
� Scale in inch/degree or 1:xxxxx along oblique equator (–Joa), or map width (–JOa)

2. Option –Job or –JOb:

� Longitude and latitude of projection center
� Longitude and latitude of second point on oblique equator
� Scale in inch/degree or 1:xxxxx along oblique equator (–Job), or map width (–JOb)

3. Option –Joc or –JOc:

� Longitude and latitude of projection center
� Longitude and latitude of projection pole
� scale in inch/degree or 1:xxxxx along oblique equator (–Joc), or map width (–JOc)

Our example was produced by the command

pscoast -R270/20/305/25r -JOc280/25.5/22/69/4.8i -B10g5 -Dl -A250 -Glightgray -W0.25p -P \
-Tf301.5/23/0.4i/2 --HEADER_FONT_SIZE=8p --LABEL_OFFSET=0.05i > GMT_obl_merc.ps
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Figure 6.16: Oblique Mercator map using –Joc. We make it clear which direction is North by adding a star
rose with the –T option.
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It uses definition 3 for an oblique view of some Caribbean islands. Note that we define our region using
the rectangular system described earlier. If we do not append an “r” to the –R string then the information
provided with the –R option is assumed to be oblique degrees about the projection center rather than the
usual geographic coordinates. This interpretation is chosen since in general the parallels and meridians are
not very suitable as map boundaries.

6.3.5 Cassini Cylindrical Projection (–Jc –JC)

This cylindrical projection was developed in 1745 by C. F. Cassini for the survey of France. It is occasion-
ally called Cassini-Soldner since the latter provided the more accurate mathematical analysis that led to the
development of the ellipsoidal formulae. The projection is neither conformal nor equal-area, and behaves
as a compromise between the two end-members. The distortion is zero along the central meridian. It is
best suited for mapping regions of north-south extent. The central meridian, each meridian 90

�

away, and
equator are straight lines; all other meridians and parallels are complex curves. The requirements to define
this projection are:

� Longitude and latitude of central point

� Scale in inch/degree or as 1:xxxxx (–Jc), or map width (–JC)

A detailed map of the island of Sardinia centered on the 8
�

45’E meridian using the Cassini projection
can be obtained by running the command:

pscoast -R7:30/38:30/10:30/41:30r -JC8.75/40/2.5i -B1g1f30m -Lf9.5/38.8/40/60 -Dh -Glightgray \
-W0.25p -Ia/0.5p -P --LABEL_FONT_SIZE=12 > GMT_cassini.ps
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Figure 6.17: Cassini map over Sardinia.

As with the previous projections, the user can choose between a rectangular boundary (used here) or a
geographical (WESN) boundary.
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6.3.6 Cylindrical Equidistant Projection (–Jq –JQ)

This simple cylindrical projection is really a linear scaling of longitudes and latitudes (if you desire a
different scaling for one of the axes you must choose the linear projection –Jx and append d for degrees;
see Section 5.1.1.) It is also known as the Plate Carrée projection. All meridians and parallels are straight
lines. The requirements to define this projection are:

� The central meridian

� Scale in inch/degree or as 1:xxxxx (–Jq), or map width (–JQ)

A world map centered on the dateline using this projection can be obtained by running the command:

pscoast -Rg -JQ180/4.5i -B60f30g30 -Dc -A5000 -Gblack -P > GMT_equi_cyl.ps
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Figure 6.18: World map using the equidistant cylindrical projection.

6.3.7 General Cylindrical Projections (–Jy –JY)

This cylindrical projection is actually several projections, depending on what latitude is selected as the
standard parallel. However, they are all equal area and hence non-conformal. All meridians and parallels
are straight lines. The requirements to define this projection are:

� The central meridian

� The standard parallel

� Scale in inch/degree or as 1:xxxxx (–Jy), or map width (–JY)

While you may choose any value for the standard parallel and obtain your own personal projection,
there are four choices of standard parallels that result in known (or named) projections. These are listed in
Table 6.1.

For instance, a world map centered on the 35
�

E meridian using the Behrman projection can be obtained
by running the command:

pscoast -R-145/215/-90/90 -JY35/30/4.5i -B45g45 -Dc -A10000 -Slightgray -W0.25p -P > \
GMT_general_cyl.ps
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Projection name Standard parallel
Lambert 0

�

Behrman 30
�

Trystan-Edwards 37
�

24’ (= 37.4
�

)
Peters (Gall) 45

�

Table 6.1: Standard parallels for some cylindrical projections.
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Figure 6.19: World map using the Behrman cylindrical projection.

As one can see there is considerable distortion at high latitudes since the poles map into lines.

6.3.8 Miller Cylindrical Projections (–Jj –JJ)

This cylindrical projection, presented by O. M. Miller of the American Geographic Society in 1942, is
neither equal nor conformal. All meridians and parallels are straight lines. The projection was designed
to be a compromise between Mercator and other cylindrical projections. Specifically, Miller spaced the
parallels by using Mercator’s formula with 0.8 times the actual latitude, thus avoiding the singular poles;
the result was then divided by 0.8. There is only a spherical form for this projection. The requirements to
define this projection are:

� The central meridian

� The standard parallel

� Scale in inch/degree or as 1:xxxxx (–Jj), or map width (–JJ)

For instance, a world map centered on the 90
�

E meridian at a map scale of 1:400,000,000 can be
obtained as follows:

pscoast -R-90/270/-80/90 -Jj90/1:400000000 -B45g45/30g30 -Dc -A10000 -Glightgray -W0.25p -P \
> GMT_miller.ps
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Figure 6.20: World map using the Miller cylindrical projection.
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6.4 Miscellaneous Projections

supports 8 common projections for global presentation of data or models. These are the Hammer,
Mollweide, Winkel Tripel, Robinson, Eckert IV and VI, Sinusoidal, and Van der Grinten projections. Due
to the small scale used for global maps these projections all use the spherical approximation rather than
more elaborate elliptical formulae.

6.4.1 Hammer Projection (–Jh –JH)

The equal-area Hammer projection, first presented by Ernst von Hammer in 1892, is also known as
Hammer-Aitoff (the Aitoff projection looks similar, but is not equal-area). The border is an ellipse, equa-
tor and central meridian are straight lines, while other parallels and meridians are complex curves. The
projection is defined by selecting:

� The central meridian

� Scale along equator in inch/degree or 1:xxxxx (–Jh), or map width (–JH)

A view of the Pacific ocean using the Dateline as central meridian is accomplished thus

pscoast -Rg -JH180/4.5i -Bg30/g15 -Dc -A10000 -Gblack -P > GMT_hammer.ps

Figure 6.21: World map using the Hammer projection.

6.4.2 Mollweide Projection (–Jw –JW)

This pseudo-cylindrical, equal-area projection was developed by Mollweide in 1805. Parallels are un-
equally spaced straight lines with the meridians being equally spaced elliptical arcs. The scale is only
true along latitudes 40

�

44’ north and south. The projection is used mainly for global maps showing data
distributions. It is occasionally referenced under the name homalographic projection. Like the Hammer
projection, outlined above, we need to specify only two parameters to completely define the mapping of
longitudes and latitudes into rectangular x/y coordinates:

� The central meridian

� Scale along equator in inch/degree or 1:xxxxx (–Jw), or map width (–JW)

An example centered on Greenwich can be generated thus:
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pscoast -Rd -JW0/4.5i -Bg30/g15 -Dc -A10000 -Gblack -P > GMT_mollweide.ps

Figure 6.22: World map using the Mollweide projection.

6.4.3 Winkel Tripel Projection (–Jr –JR)

The Winkel Tripel projection, presented by Oswald Winkel in 1921, is a modified azimuthal projection
that is neither conformal nor equal-area. Central meridian and equator are straight lines; other parallels
and meridians are curved. The projection is obtained by averaging the coordinates of the Equidistant
Cylindrical and Aitoff (not Hammer-Aitoff) projections. The poles map into straight lines 0.4 times the
length of equator. To use it you must enter

� The central meridian
� Scale along equator in inch/degree or 1:xxxxx (–Jr), or map width (–JR)

Centered on Greenwich, the example in Figure 6.23 was created by this command:

pscoast -Rd -JR0/4.5i -Bg30/g15 -Dc -A10000 -Ggray -P > GMT_winkel.ps

Figure 6.23: World map using the Winkel Tripel projection.
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6.4.4 Robinson Projection (–Jn –JN)

The Robinson projection, presented by Arthur H. Robinson in 1963, is a modified cylindrical projection that
is neither conformal nor equal-area. Central meridian and all parallels are straight lines; other meridians
are curved. It uses lookup tables rather than analytic expressions to make the world map “look” right3. The
scale is true along latitudes � 38

�

. The projection was originally developed for use by Rand McNally and
is currently used by the National Geographic Society. To use it you must enter

� The central meridian

� Scale along equator in inch/degree or 1:xxxxx (–Jn), or map width (–JN)

Again centered on Greenwich, the example below was created by this command:

pscoast -Rd -JN0/4.5i -Bg30/g15 -Dc -A10000 -Ggray -P > GMT_robinson.ps

Figure 6.24: World map using the Robinson projection.

6.4.5 Eckert IV and VI Projection (–Jk –JK)

The Eckert IV and VI projections, presented by Max Eckert in 1906, are pseudocylindrical equal-area pro-
jections. Central meridian and all parallels are straight lines; other meridians are equally spaced elliptical
arcs (IV) or sinusoids (VI). The scale is true along latitudes � 40

�

30’ (IV) and � 49
�

16’ (VI). Their main
use is in thematic world maps. To select Eckert IV you must use –JKf (f for “four”) while Eckert VI is
selected with –JKs (s for “six”). If no modifier is given it defaults to Eckert VI. In addition, you must enter

� The central meridian

� Scale along equator in inch/degree or 1:xxxxx (–Jk), or map width (–JK)

Centered on the Dateline, the Eckert IV example below was created by this command:

pscoast -Rg -JKf180/4.5i -Bg30/g15 -Dc -A10000 -W0.25p -Gwhite -Slightgray -P > GMT_eckert4.ps

The same script, with s instead of f, yields the Eckert VI map:

3Robinson provided a table of y-coordinates for latitudes every 5 � . To project values for intermediate latitudes one must inter-
polate the table. Different interpolants may result in slightly different maps. GMT uses the interpolant selected by the parameter
INTERPOLANT in the .gmtdefaults4 file.
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Figure 6.25: World map using the Eckert IV projection.

Figure 6.26: World map using the Eckert VI projection.

6.4.6 Sinusoidal Projection (–Ji –JI)

The sinusoidal projection is one of the oldest known projections, is equal-area, and has been used since the
mid-16th century. It has also been called the “Equal-area Mercator” projection. The central meridian is a
straight line; all other meridians are sinusoidal curves. Parallels are all equally spaced straight lines, with
scale being true along all parallels (and central meridian). To use it, you need to select:

� The central meridian

� Scale along equator in inch/degree or 1:xxxxx (–Ji), or map width (–JI)

A simple world map using the sinusoidal projection is therefore obtained by

pscoast -Rd -JI0/4.5i -Bg30/g15 -Dc -A10000 -Ggray -P > GMT_sinusoidal.ps
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Figure 6.27: World map using the Sinusoidal projection.

To reduce distortion of shape the interrupted sinusoidal projection was introduced in 1927. Here, three
symmetrical segments are used to cover the entire world. Traditionally, the interruptions are at 160

�

W,
20

�

W, and 60
�

E. To make the interrupted map we must call pscoast for each segment and superpose the
results. To produce an interrupted world map (with the traditional boundaries just mentioned) that is 5.04
inches wide we use the scale 5.04/360

�

= 0.014 and offset the subsequent plots horizontally by their widths
(140

�
� 0.014 and 80

�
� 0.014):

pscoast -R200/340/-90/90 -Ji270/0.014i -Bg30/g15 -A10000 -Dc -Gblack -K -P > GMT_sinus_int.ps
pscoast -R-20/60/-90/90 -Ji20/0.014i -Bg30/g15 -Dc -A10000 -Gblack -X1.96i -O -K >> GMT_sinus_int.ps
pscoast -R60/200/-90/90 -Ji130/0.014i -Bg30/g15 -Dc -A10000 -Gblack -X1.12i -O >> GMT_sinus_int.ps

Figure 6.28: World map using the Interrupted Sinusoidal projection.

The usefulness of the interrupted sinusoidal projection is basically limited to display of global, discon-
tinuous data distributions like hydrocarbon and mineral resources, etc.

6.4.7 Van der Grinten Projection (–Jv –JV)

The Van der Grinten projection, presented by Alphons J. van der Grinten in 1904, is neither equal-area nor
conformal. Central meridian and Equator are straight lines; other meridians are arcs of circles. The scale
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is true along the Equator only. Its main use is to show the entire world enclosed in a circle. To use it you
must enter

� The central meridian

� Scale along equator in inch/degree or 1:xxxxx (–Jv), or map width (–JV)

Centered on the Dateline, the example below was created by this command:

pscoast -Rg -JV180/4i -Bg30/g15 -Dc -Glightgray -A10000 -W0.25p -P > GMT_grinten.ps

Figure 6.29: World map using the Van der Grinten projection.
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7. Cook-book

In this section we will be giving several examples of typical usage of programs. In general, we will
start with a raw data set, manipulate the numbers in various ways, then display the results in diagram or
map view. The resulting plots will have in common that they are all made up of simpler plots that have
been overlaid to create a complex illustration. We will mostly follow the following format:

1. We explain what we want to achieve in plain language.

2. We present an annotated cshell script that contains all commands used to generate the illustration.

3. We explain the rationale behind the commands.

4. We present the illustration, 50% reduced in size, and without the timestamp (–U).

A detailed discussion of each command is not given; we refer you to the manual pages for command
line syntax, etc. We encourage you to run these scripts for yourself. See Appendix D if you would like
an electronic version of all the shell-scripts (both csh and sh scripts are available; only the csh -scripts are
discussed here) and support data used below. Note that all examples explicitly specifies the measurement
units, so although we use inches you should be able to run these scripts and get the same plots even if you
have cm as the default measure unit. The examples are all written to be “quiet”, that is no information
is echoed to the screen. Thus, these scripts are well suited for background execution. Note that we also
end each script by cleaning up after ourselves. Because awk is broken as designed on some systems, and
nawk is not available on others we refer to $AWK in the scripts below; the do examples scripts will set
this when running all examples.

7.1 The making of contour maps

We want to create two contour maps of the low order geoid using the Hammer equal area projection. Our
gridded data file is called osu91a1f 16.grd and contains a global 1

�

by 1
�

gridded geoid (we will see how
to make gridded files later). We would like to show one map centered on Greenwich and one centered on
the dateline. Positive contours should be drawn with a solid pen and negative contours with a dashed pen.
Annotations should occur for every 50 m contour level, and both contour maps should show the continents
in light gray in the background. Finally, we want a rectangular frame surrounding the two maps. This is
how it is done:

#!/bin/csh
# GMT EXAMPLE 01
#
# $Id: job01.csh,v 1.9 2004/05/26 03:25:22 pwessel Exp $
#
# Purpose: Make two contour maps based on the data in the file osu91a1f_16.grd
# GMT progs: gmtset grdcontour psbasemap pscoast
# Unix progs: rm
#
gmtset GRID_CROSS_SIZE 0 ANNOT_FONT_SIZE_PRIMARY 10
psbasemap -R0/6.5/0/9 -Jx1i -B0 -P -K -U"Example 1 in Cookbook" >! example_01.ps
pscoast -Rg -JH0/6i -X0.25i -Y0.5i -O -K -Bg30 -Dc -Glightgray >> example_01.ps
grdcontour -R osu91a1f_16.grd -J -C10 -A50+s7 -Gd4i -L-1000/-1 -Wc0.25p,- -Wa0.75p,- -O -K \

-T0.1i/0.02i >> example_01.ps
grdcontour -R osu91a1f_16.grd -J -C10 -A50+s7 -Gd4i -L-1/1000 -O -K -T0.1i/0.02i >> example_01.ps
pscoast -Rg -JH180/6i -Y4i -O -K -Bg30:."Low Order Geoid": -Dc -Glightgray >> example_01.ps
grdcontour osu91a1f_16.grd -J -C10 -A50+s7 -Gd4i -L-1000/-1 -Wc0.25p,- -Wa0.75p,- -O -K \

-T0.1i/0.02i:-+ >> example_01.ps
grdcontour osu91a1f_16.grd -J -C10 -A50+s7 -Gd4i -L-1/1000 -O -T0.1i/0.02i:-+ >> example_01.ps
\rm -f .gmtcommands4 .gmtdefaults4

The first command draws a box surrounding the maps. This is followed by two sequences of pscoast,
grdcontour, grdcontour. They differ in that the first is centered on Greenwich; the second on the
dateline. We use the limit option (–L) in grdcontour to select negative contours only and plot those
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with a dashed pen, then positive contours only and draw with a solid pen [Default]. The –T option causes
tickmarks pointing in the downhill direction to be drawn on the innermost, closed contours. For the upper
panel we also added - and + to the local lows and highs. You can find this illustration as Figure 7.1.
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Figure 7.1: Contour maps of gridded data.

7.2 Image presentations

As our second example we will demonstrate how to make color images from gridded data sets (again, we
will deferr the actual making of gridded files to later examples). We will use the supplemental program
grdraster to extract 2-D grdfiles of bathymetry and Geosat geoid heights and put the two images on the
same page. The region of interest is the Hawaiian islands, and due to the oblique trend of the island chain
we prefer to rotate our geographical data sets using an oblique Mercator projection defined by the hotspot
pole at (68

�

W, 69
�

N). We choose the point (190
�

, 25.5
�

) to be the center of our projection (e.g., the local
origin), and we want to image a rectangular region defined by the longitudes and latitudes of the lower left
and upper right corner of region. In our case we choose (160

�

, 20
�

) and (220
�

, 30
�

) as the corners. We use
grdimage to make the illustration:

#!/bin/csh
# GMT EXAMPLE 02
#
# $Id: job02.csh,v 1.8 2004/04/13 21:32:27 pwessel Exp $
#
# Purpose: Make two color images based gridded data
# GMT progs: gmtset grd2cpt grdgradient grdimage makecpt psscale pstext
# Unix progs: cat rm
#
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gmtset HEADER_FONT_SIZE 30 OBLIQUE_ANNOTATION 0
#get gridded data using GMT supplemental program grdraster
#grdraster 1 -R160/20/220/30r -JOc190/25.5/292/69/4.5i -GHI_topo2.grd=0/0.001/0
#grdraster 4 -R -JO -GHI_geoid2.grd
makecpt -Crainbow -T-2/14/2 >! g.cpt
grdimage HI_geoid2.grd -R160/20/220/30r -JOc190/25.5/292/69/4.5i -E50 -K -P -B10 -Cg.cpt \

-U/-1.25i/-1i/"Example 2 in Cookbook" -X1.5i -Y1.25i >! example_02.ps
psscale -Cg.cpt -D5.1i/1.35i/2.88i/0.4i -O -K -L -B2:GEOID:/:m: -E >> example_02.ps
grd2cpt HI_topo2.grd -Crelief -Z >! t.cpt
grdgradient HI_topo2.grd -A0 -Nt -GHI_topo2_int.grd
grdimage HI_topo2.grd -IHI_topo2_int.grd -R -J -E50 -B10:."H@#awaiian@# T@#opo and @#G@#eoid:" \

-O -K -Ct.cpt -Y4.5i >> example_02.ps
psscale -Ct.cpt -D5.1i/1.35i/2.88i/0.4i -O -K -I0.3 -B2:TOPO:/:km: >> example_02.ps
cat << EOF | pstext -R0/8.5/0/11 -Jx1i -O -N -Y-4.5i >> example_02.ps
-0.4 7.5 30 0.0 1 CB a)
-0.4 3.0 30 0.0 1 CB b)
EOF
\rm -f .gmtcommands4 .gmtdefaults4 HI_topo2_int.grd ?.cpt

The first step extracts the 2-D data sets from the local data base using grdraster, which is a supple-
mental utility program (see Appendix A) that may be adapted to reflect the nature of your data base format.
It automatically figures out the required extent of the region given the two corners points and the projection.
The extreme meridians and parallels enclosing the oblique region is –R159:50/220:10/3:10/47:35. This is
the area extracted by grdraster. For your convenience we have commented out those lines and provided
the two extracted files so you do not need grdraster to try this example. By using the embedded grdfile
format mechanism we saved the topography using kilometers as the data unit. We now have two grdfiles
with bathymetry and geoid heights, respectively. We use makecpt to generate a linear color palette file
geoid.cpt for the geoid and use grd2cpt to get a histogram-equalized cpt file topo.cpt for the topography
data. To emphasize the structures in the data we calculate the slopes in the north-south direction using grd-
gradient; these will be used to modulate the color image. Next we run grdimage to create a color-code
image of the Geosat geoid heights, and draw a color scale to the right of the image with psscale. We also
annotate the color scales with psscale. Similarly, we run grdimage but specify –Y4.5i to plot above the
previous image. Adding scale and label the two plots a) and b) completes the illustration (Figure 7.2).

7.3 Spectral estimation and xy-plots

In this example we will show how to use the programs fitcircle, project, sample1d, spec-
trum1d, psxy, and pstext. Suppose you have (lon, lat, gravity) along a satellite track in a file called
sat.xyg, and (lon, lat, gravity) along a ship track in a file called ship.xyg. You want to make a cross-spectral
analysis of these data. First, you will have to get the two data sets into equidistantly sampled time-series
form. To do this, it will be convenient to project these along the great circle that best fits the sat track.
We must use fitcircle to find this great circle and choose the L2 estimates of best pole. We project the
data using project to find out what their ranges are in the projected coordinate. The minmax utility will
report the minimum and maximum values for multi-column ASCII tables. Use this information to select
the range of the projected distance coordinate they have in common. The script prompts you for that in-
formation after reporting the values. We decide to make a file of equidistant sampling points spaced 1 km
apart from -1167 to +1169, and use the UNIX utility $AWK to accomplish this step. We can then resample
the projected data, and carry out the cross-spectral calculations, assuming that the ship is the input and
the satellite is the output data. There are several intermediate steps that produce helpful plots showing the
effect of the various processing steps (example 3[a–f].ps), while the final plot example 03.ps shows the
ship and sat power in one diagram and the coherency on another diagram, both on the same page. Note the
extended use of pstext and psxy to put labels and legends directly on the plots. For that purpose we often
use –Jx1i and specify positions in inches directly. Thus, the complete automated script reads:

#!/bin/csh
# GMT EXAMPLE 03
#
# $Id: job03.csh,v 1.6 2004/04/10 17:19:14 pwessel Exp $
#
# Purpose: Resample track data, do spectral analysis, and plot
# GMT progs: filter1d, fitcircle, gmtset, minmax, project, sample1d,
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Figure 7.2: Color images from gridded data.

# spectrum1d, trend1d, pshistogram, psxy, pstext
# Unix progs: $AWK, cat, echo, head, paste, rm, tail
#
# This example begins with data files "ship.xyg" and "sat.xyg" which
# are measurements of a quantity "g" (a "gravity anomaly" which is an
# anomalous increase or decrease in the magnitude of the acceleration
# of gravity at sea level). g is measured at a sequence of points "x,y"
# which in this case are "longitude,latitude". The "sat.xyg" data were
# obtained by a satellite and the sequence of points lies almost along
# a great circle. The "ship.xyg" data were obtained by a ship which
# tried to follow the satellite’s path but deviated from it in places.
# Thus the two data sets are not measured at the same set of points,
# and we use various GMT tools to facilitate their comparison.
# The main illustration (example_03.ps) are accompanied with 5 support
# plots (03a-f) showing data distributions and various intermediate steps.
#
# First, we use "fitcircle" to find the parameters of a great circle
# most closely fitting the x,y points in "sat.xyg":
#
fitcircle sat.xyg -L2 >! report
set cpos = ‘grep "L2 Average Position" report‘
set ppos = ‘grep "L2 N Hemisphere" report‘
#
# Now we use "project" to project the data in both sat.xyg and ship.xyg
# into data.pg, where g is the same and p is the oblique longitude around
# the great circle. We use -Q to get the p distance in kilometers, and -S
# to sort the output into increasing p values.
#
project sat.xyg -C$cpos[1]/$cpos[2] -T$ppos[1]/$ppos[2] -S -Fpz -Q >! sat.pg
project ship.xyg -C$cpos[1]/$cpos[2] -T$ppos[1]/$ppos[2] -S -Fpz -Q >! ship.pg
#
# The minmax utility will report the minimum and maximum values for all columns.
# We use this information first with a large -I value to find the appropriate -R
# to use to plot the .pg data.
#
set plotr = ‘cat sat.pg ship.pg | minmax -I100/25 -C‘
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gmtset MEASURE_UNIT INCH
psxy -R$plotr[1]/$plotr[2]/$plotr[3]/$plotr[4] -U/-1.75i/-1.25i/"Example 3a in Cookbook" \

-JX8i/5i -X2i -Y1.5i -K -W1p sat.pg \
-Ba500f100:"Distance along great circle":/a100f25:"Gravity anomaly (mGal)":WeSn >! example_03a.ps

psxy -R -JX -O -Sp0.03i ship.pg >> example_03a.ps
#
# From this plot we see that the ship data have some "spikes" and also greatly
# differ from the satellite data at a point about p ˜= +250 km, where both of
# them show a very large anomaly.
#
# To facilitate comparison of the two with a cross-spectral analysis using "spectrum1d",
# we resample both data sets at intervals of 1 km. First we find out how the data are
# typically spaced using AKW to get the delta-p between points and view it with
# "pshistogram".
#
$AWK ’{ if (NR > 1) print $1 - last1; last1 = $1; }’ ship.pg | pshistogram -W0.1 -Gblack -JX3i -K \

-X2i -Y1.5i -B:."Ship": -U/-1.75i/-1.25i/"Example 3b in Cookbook" >! example_03b.ps
$AWK ’{ if (NR > 1) print $1 - last1; last1 = $1; }’ sat.pg | pshistogram -W0.1 -Gblack -JX3i -O \

-X5i -B:."Sat": >> example_03b.ps
#
# This experience shows that the satellite values are spaced fairly evenly, with
# delta-p between 3.222 and 3.418. The ship values are spaced quite unevelnly, with
# delta-p between 0.095 and 9.017. This means that when we want 1 km even sampling,
# we can use "sample1d" to interpolate the sat data, but the same procedure applied
# to the ship data could alias information at shorter wavelengths. So we have to use
# "filter1d" to resample the ship data. Also, since we observed spikes in the ship
# data, we use a median filter to clean up the ship values. We will want to use "paste"
# to put the two sampled data sets together, so they must start and end at the same
# point, without NaNs. So we want to get a starting and ending point which works for
# both of them. Thus we need to start at max( min(ship.p), min(sat.p) ) and end
# conversely. "minmax" can’t do this easily since it will return min( min(), min() ),
# so we do a little head, paste $AWK to get what we want.
#
head -1 ship.pg >! ship.pg.extr
head -1 sat.pg >! sat.pg.extr
paste ship.pg.extr sat.pg.extr | $AWK ’{ if ($1 > $3) print int($1); else print int($3); }’ \

>! sampr1
tail -1 ship.pg >! ship.pg.extr
tail -1 sat.pg >! sat.pg.extr
paste ship.pg.extr sat.pg.extr | $AWK ’{ if ($1 < $3) print int($1); else print int($3); }’ \

>! sampr2
set sampr = ‘paste sampr1 sampr2‘
#
# Now we can use sampr in $AWK to make a sampling points file for sample1d:
$AWK ’BEGIN { for (i = ’$sampr[1]’; i <= ’$sampr[2]’; i++) print i }’ /dev/null >! samp.x
#
# Now we can resample the projected satellite data:
#
sample1d sat.pg -Nsamp.x >! samp_sat.pg
#
# For reasons above, we use filter1d to pre-treat the ship data. We also need to sample it
# because of the gaps > 1 km we found. So we use filter1d | sample1d. We also use the -E
# on filter1d to use the data all the way out to sampr[1]/sampr[2] :
#
filter1d ship.pg -Fm1 -T$sampr[1]/$sampr[2]/1 -E | sample1d -Nsamp.x >! samp_ship.pg
#
# Now we plot them again to see if we have done the right thing:
#
psxy -R$plotr[1]/$plotr[2]/$plotr[3]/$plotr[4] -JX8i/5i -X2i -Y1.5i -K -W1p samp_sat.pg \

-Ba500f100:"Distance along great circle":/a100f25:"Gravity anomaly (mGal)":WeSn \
-U/-1.75i/-1.25i/"Example 3c in Cookbook" >! example_03c.ps

psxy -R -JX -O -Sp0.03i samp_ship.pg >> example_03c.ps
#
# Now to do the cross-spectra, assuming that the ship is the input and the sat is the output
# data, we do this:
#
paste samp_ship.pg samp_sat.pg | cut -f2,4 | spectrum1d -S256 -D1 -W -C >& /dev/null
#
# Now we want to plot the spectra. The following commands will plot the ship and sat
# power in one diagram and the coherency on another diagram, both on the same page.
# Note the extended use of pstext and psxy to put labels and legends directly on the plots.
# For that purpose we often use -Jx1i and specify positions in inches directly:
#
psxy spectrum.coh -Ba1f3p:"Wavelength (km)":/a0.25f0.05:"Coherency@+2@+":WeSn -JX-4il/3.75i \

-R1/1000/0/1 -U/-2.25i/-1.25i/"Example 3 in Cookbook" -P -K -X2.5i -Sc0.07i -Gblack \
-Ey/2 -Y1.5i >! example_03.ps

echo "3.85 3.6 18 0.0 1 TR Coherency@+2@+" | pstext -R0/4/0/3.75 -Jx1i -O -K >> example_03.ps
cat << END >! box.d
2.375 3.75
2.375 3.25
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4 3.25
END
psxy -R -Jx -O -K -W1.5p box.d >> example_03.ps
psxy -Ba1f3p/a1f3p:"Power (mGal@+2@+km)"::."Ship and Satellite Gravity":WeSn spectrum.xpower \

-St0.07i -O -R1/1000/0.1/10000 -JX-4il/3.75il -Y4.2i -K -Ey/2 >> example_03.ps
psxy spectrum.ypower -R -JX -O -K -Gblack -Sc0.07i -Ey/2 >> example_03.ps
echo "3.9 3.6 18 0.0 1 TR Input Power" | pstext -R0/4/0/3.75 -Jx -O -K >> example_03.ps
psxy -R -Jx -O -K -W1.5p box.d >> example_03.ps
psxy -R -Jx -O -K -Glightgray -L -W1.5p << END >> example_03.ps
0.25 0.25
1.4 0.25
1.4 0.9
0.25 0.9
END
echo "0.4 0.7" | psxy -R -Jx -O -K -St0.07i -Gblack >> example_03.ps
echo "0.5 0.7 14 0.0 1 ML Ship" | pstext -R -Jx -O -K >> example_03.ps
echo "0.4 0.4" | psxy -R -Jx -O -K -Sc0.07i -Gblack >> example_03.ps
echo "0.5 0.4 14 0.0 1 ML Satellite" | pstext -R -Jx -O >> example_03.ps
#
# Now we wonder if removing that large feature at 250 km would make any difference.
# We could throw away a section of data with $AWK or sed or head and tail, but weW
# demonstrate the use of "trend1d" to identify outliers instead. We will fit a
# straight line to the samp_ship.pg data by an iteratively-reweighted method and
# save the weights on output. Then we will plot the weights and see how things
# look:
#
trend1d -Fxw -N2r samp_ship.pg >! samp_ship.xw
psxy -R$plotr[1]/$plotr[2]/$plotr[3]/$plotr[4] -JX8i/4i -X2i -Y1.5i -K -Sp0.03i \

-Ba500f100:"Distance along great circle":/a100f25:"Gravity anomaly (mGal)":WeSn \
-U/-1.75i/-1.25i/"Example 3d in Cookbook" samp_ship.pg >! example_03d.ps

psxy -R$plotr[1]/$plotr[2]/0/1.1 -JX8i/1.1i -O -Y4.25i -Bf100/a0.5f0.1:"Weight":Wesn -Sp0.03i \
samp_ship.xw >> example_03d.ps

#
# From this we see that we might want to throw away values where w < 0.6. So we try that,
# and this time we also use trend1d to return the residual from the model fit (the
# de-trended data):
trend1d -Fxrw -N2r samp_ship.pg | $AWK ’{ if ($3 > 0.6) print $1, $2 }’ | sample1d -Nsamp.x >! \

samp2_ship.pg
trend1d -Fxrw -N2r samp_sat.pg | $AWK ’{ if ($3 > 0.6) print $1, $2 }’ | sample1d -Nsamp.x >! \

samp2_sat.pg
#
# We plot these to see how they look:
#
set plotr = ‘cat samp2_sat.pg samp2_ship.pg | minmax -I100/25 -C‘
psxy -R$plotr[1]/$plotr[2]/$plotr[3]/$plotr[4] -JX8i/5i -X2i -Y1.5i -K -W1p \

-Ba500f100:"Distance along great circle":/a50f25:"Gravity anomaly (mGal)":WeSn \
-U/-1.75i/-1.25i/"Example 3e in Cookbook" samp2_sat.pg >! example_03e.ps

psxy -R -JX -O -Sp0.03i samp2_ship.pg >> example_03e.ps
#
# Now we do the cross-spectral analysis again. Comparing this plot (example_03f.ps) with
# the previous one (example_03.ps) we see that throwing out the large feature has reduced
# the power in both data sets and reduced the coherency at wavelengths between 20--60 km.
#
paste samp2_ship.pg samp2_sat.pg | cut -f2,4 | spectrum1d -S256 -D1 -W -C >& /dev/null
#
psxy spectrum.coh -Ba1f3p:"Wavelength (km)":/a0.25f0.05:"Coherency@+2@+":WeSn -JX-4il/3.75i \

-R1/1000/0/1 -U/-2.25i/-1.25i/"Example 3f in Cookbook" -P -K -X2.5i -Sc0.07i -Gblack \
-Ey/2 -Y1.5i >! example_03f.ps

echo "3.85 3.6 18 0.0 1 TR Coherency@+2@+" | pstext -R0/4/0/3.75 -Jx -O -K >> example_03f.ps
cat << END >! box.d
2.375 3.75
2.375 3.25
4 3.25
END
psxy -R -Jx -O -K -W1.5p box.d >> example_03f.ps
psxy -Ba1f3p/a1f3p:"Power (mGal@+2@+km)"::."Ship and Satellite Gravity":WeSn spectrum.xpower \

-St0.07i -O -R1/1000/0.1/10000 -JX-4il/3.75il -Y4.2i -K -Ey/2 >> example_03f.ps
psxy spectrum.ypower -R -JX -O -K -Gblack -Sc0.07i -Ey/2 >> example_03f.ps
echo "3.9 3.6 18 0.0 1 TR Input Power" | pstext -R0/4/0/3.75 -Jx -O -K >> example_03f.ps
psxy -R -Jx -O -K -W1.5p box.d >> example_03f.ps
psxy -R -Jx -O -K -Glightgray -L -W1.5p << END >> example_03f.ps
0.25 0.25
1.4 0.25
1.4 0.9
0.25 0.9
END
echo "0.4 0.7" | psxy -R -Jx -O -K -St0.07i -Gblack >> example_03f.ps
echo "0.5 0.7 14 0.0 1 ML Ship" | pstext -R -Jx -O -K >> example_03f.ps
echo "0.4 0.4" | psxy -R -Jx -O -K -Sc0.07i -Gblack >> example_03f.ps
echo "0.5 0.4 14 0.0 1 ML Satellite" | pstext -R -Jx -O >> example_03f.ps
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#
\rm -f box.d report samp* *.pg *.extr spectrum.* .gmtcommands4 .gmtdefaults4

The final illustration (Figure 7.3) shows that the ship gravity anomalies have more power than altimetry
derived gravity for short wavelengths and that the coherency between the two signals improves dramatically
for wavelengths � 20 km.
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Figure 7.3: Spectral estimation and x � y-plots.

7.4 A 3-D perspective mesh plot

This example will illustrate how to make a fairly complicated composite figure. We need a subset of the
ETOPO5 bathymetry1 and Geosat geoid data sets which we will extract from the local data bases using
grdraster. We would like to show a 2-layer perspective plot where layer one shows a contour map of the
marine geoid with the location of the Hawaiian islands superposed, and a second layer showing the 3-D
mesh plot of the topography. We also add an arrow pointing north and some text. This is how to do it:

#!/bin/csh
# GMT EXAMPLE 04
#
# $Id: job04.csh,v 1.8 2004/06/01 02:28:31 pwessel Exp $
#
# Purpose: 3-D mesh plot of Hawaiian topography and geoid

1These data are available on CD-ROM from NGDC (www.ngdc.noaa.gov).
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# GMT progs: grdcontour, grdview, pscoast, pstext, psxyz
# Unix progs: echo, rm
#
echo ’-10 255 0 255’ >! zero.cpt
echo ’0 100 10 100’ >> zero.cpt
grdcontour HI_geoid4.grd -Jm0.45i -E60/30 -R195/210/18/25 -C1 -A5+o -Gd4i -K -P -X1.5i -Y1.5i \

-U/-1.25i/-1.25i/"Example 4 in Cookbook" >! example_04.ps
pscoast -J -E60/30 -R -B2/2NEsw -Gblack -O -K -T209/19.5/1i >> example_04.ps
grdview HI_topo4.grd -J -Jz0.34i -Czero.cpt -E60/30 -R195/210/18/25/-6/4 -N-6/lightgray -Qsm -O -K \

-B2/2/2:"Topo (km)":neswZ -Y2.2i >> example_04.ps
echo ’3.25 5.75 60 0.0 33 BC H@#awaiian@# R@#idge’ | pstext -R0/10/0/10 -Jx1i -O >> example_04.ps
\rm -f zero.cpt .gmt*
csh -f job4c.csh

The purpose of the color palette file zero.cpt is to have the positive topography mesh painted light gray
(the remainder is white). Figure 7.4 shows the complete illustration.
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Figure 7.4: 3-D perspective mesh plot.

A color version of this figure was used in our first article in EOS Trans. AGU (Oct. 8th, 1991). It
was created along similar lines, but instead of a mesh plot we chose a color-coded surface with artificial
illumination from a light-source due north. We choose to use the –Qi option in grdview to achieve a high
degree of smoothness. Here, we select 100 dpi since that will be the resolution of our final raster (The EOS
raster was 300 dpi). We used grdgradient to provide the intensity files. The following script creates the
color PostScript file. Note that the size of the resulting output file is directly dependent on the square of the
dpi chosen for the scanline conversion. A higher value for dpi in –Qi would have resulted in a much larger
output file. The cpt files were taken from Example 2.

#!/bin/csh
# GMT EXAMPLE 4c
#
# $Id: job4c.csh,v 1.7 2004/05/11 19:44:44 pwessel Exp $
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#
# 3-D perspective color plot of Hawaiian topography and geoid
# GMT progs: grdcontour, grdview, pscoast, pstext, psxyz
# Unix progs: echo, rm
#
grdgradient HI_geoid4.grd -A0 -Gg_intens.grd -Nt0.75 -M
grdgradient HI_topo4.grd -A0 -Gt_intens.grd -Nt0.75 -M
#
grdview HI_geoid4.grd -Ig_intens.grd -JM6.75i -E60/30 -R195/210/18/25 -Cgeoid.cpt -Qi100 -K -X1.5i \

-Y1.25i -P -U/-1.25i/-1i/"Example 4c in Cookbook" >! example_4c.ps
pscoast -J -E60/30 -R -B2/2NEsw -Gblack -O -K >> example_4c.ps
psbasemap -R -J -E60/30 -O -K -T209/19.5/1i --COLOR_BACKGROUND=red --TICK_PEN=0.5p,red >> example_4c.ps
grdview HI_topo4.grd -It_intens.grd -J -JZ3.4i -Ctopo.cpt -E60/30 -R195/210/18/25/-6/4 \

-N-6/lightgray -Qi100 -O -K -Y2.2i >> example_4c.ps
psbasemap -J -JZ3.4i -E60/30 -R -Z-6 -O -K -B2/2/2:"Topo (km)":neZ >> example_4c.ps
echo ’3.25 5.75 60 0.0 33 BC H@#awaiian@# R@#idge’ | pstext -R0/10/0/10 -Jx1i -O >> example_4c.ps
\rm -f *_intens.grd .gmtcommands4

7.5 A 3-D illuminated surface in black and white

Instead of a mesh plot we may choose to show 3-D surfaces using artificial illumination. For this example
we will use grdmath to make a grdfile that contains the surface given by the function z

�
x � y � � cos

�
2πr � 8 � �

e �
r

�
10, where r2 � �

x2 �
y2 � . The illumination is obtained by passing two grdfiles to grdview: One with

the z-values (the surface) and another with intensity values (which should be in the � 1 range). We use
grdgradient to compute the horizontal gradients in the direction of the artificial light source. The gray.cpt
file only has one line that states that all z values should have the gray level 128. Thus, variations in shade
are entirely due to variations in gradients, or illuminations. We choose to illuminate from the SW and view
the surface from SE:

#!/bin/csh
# GMT EXAMPLE 05
#
# $Id: job05.csh,v 1.4 2004/04/10 17:19:14 pwessel Exp $
#
# Purpose: Generate grid and show monochrome 3-D perspective
# GMT progs: grdgradient, grdmath, grdview, pstext
# Unix progs: echo, rm
#
grdmath -R-15/15/-15/15 -I0.3 X Y HYPOT DUP 2 MUL PI MUL 8 DIV COS EXCH NEG 10 DIV EXP MUL \

= sombrero.grd
echo ’-5 128 5 128’ >! gray.cpt
grdgradient sombrero.grd -A225 -Gintensity.grd -Nt0.75
grdview sombrero.grd -JX6i -JZ2i -B5/5/0.5SEwnZ -N-1/white -Qs -Iintensity.grd -X1.5i -K \

-Cgray.cpt -R-15/15/-15/15/-1/1 -E120/30 -U/-1.25i/-0.75i/"Example 5 in Cookbook" >! example_05.ps
echo "4.1 5.5 50 0 33 BC z(r) = cos (2@˜p@˜r/8) * e@+-r/10@+" | pstext -R0/11/0/8.5 -Jx1i -O \

>> example_05.ps
\rm -f gray.cpt sombrero.grd intensity.grd .gmt*

The variations in intensity could be made more dramatic by using grdmath to scale the intensity file
before running grdview. For very rough data sets one may improve the smoothness of the intensities by
passing the output of grdgradient to grdhisteq. The shell-script above will result in a plot like the one
in Figure 7.5.

7.6 Plotting of histograms

provides two tools to render histograms: pshistogram and psrose. The former takes care of
regular histograms whereas the latter deals with polar histograms (rose diagrams, sector diagrams, and
windrose diagrams). We will show an example that involves both programs. The file fractures.yx contains a
compilation of fracture lengths and directions as digitized from geological maps. The file v3206.t contains
all the bathymetry measurements from Vema cruise 3206. Our complete figure (Figure 7.6) was made
running this script:
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Figure 7.5: 3-D illuminated surface.

#!/bin/csh
# GMT EXAMPLE 06
#
# $Id: job06.csh,v 1.4 2004/04/13 21:32:27 pwessel Exp $
#
# Purpose: Make standard and polar histograms
# GMT progs: pshistogram, psrose
# Unix progs: rm
#
psrose fractures.d -A10r -S1.8in -U/-2.25i/-0.75i/"Example 6 in Cookbook" -P -Gblack -R0/1/0/360 \

-X2.5i -K -B0.2g0.2/30g30 >! example_06.ps
pshistogram -Ba2000f1000:"Topography (m)":/a10f5:"Frequency"::,%::."Two types of histograms":WSne \
v3206.t -R-6000/0/0/30 -JX4.8i/2.4i -Ggray -O -Y5.5i -X-0.5i -L0.5p -Z1 -W250 >> example_06.ps
\rm -f .gmt*

7.7 A simple location map

Many scientific papers start out by showing a location map of the region of interest. This map will typically
also contain certain features and labels. This example will present a location map for the equatorial Atlantic
ocean, where fracture zones and mid-ocean ridge segments have been plotted. We also would like to plot
earthquake locations and available isochrons. We have obtained one file, quakes.xym, which contains the
position and magnitude of available earthquakes in the region. We choose to use magnitude/100 for the
symbol-size in inches. The digital fracture zone traces (fz.xy) and isochrons (0 isochron as ridge.xy, the
rest as isochrons.xy) were digitized from available maps2. We create the final location map (Figure 7.7)
with the following script:

#!/bin/csh
# GMT EXAMPLE 07
#
# $Id: job07.csh,v 1.6 2004/04/10 17:19:14 pwessel Exp $
#
# Purpose: Make a basemap with earthquakes and isochrons etc
# GMT progs: pscoast, pstext, psxy
# Unix progs: $AWK, echo, rm
#
pscoast -R-50/0/-10/20 -JM9i -K -GP300/26 -Dl -W0.25p -B10 -U"Example 7 in Cookbook" >! example_07.ps

2These data are available on CD-ROM from NGDC (www.ngdc.noaa.gov).
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Figure 7.6: Two kinds of histograms.

psxy -R -J -O -K -M fz.xy -W0.5pta >> example_07.ps
$AWK ’{print $1-360.0, $2, $3*0.01}’ quakes.xym | psxy -R -J -O -K -H1 -Sci -Gwhite -W0.25p \

>> example_07.ps
psxy -R -J -O -K -M isochron.xy -W0.75p >> example_07.ps
psxy -R -J -O -K -M ridge.xy -W1.75p >> example_07.ps
psxy -R -J -O -K -Gwhite -W1p -A << END >> example_07.ps
-14.5 15.2
-2 15.2
-2 17.8

-14.5 17.8
END
psxy -R -J -O -K -Gwhite -W0.5p -A << END >> example_07.ps
-14.35 15.35
-2.15 15.35
-2.15 17.65

-14.35 17.65
END
echo "-13.5 16.5" | psxy -R -J -O -K -Sc0.08i -Gwhite -W0.5p >> example_07.ps
echo "-12.5 16.5 18 0 6 LM ISC Earthquakes" | pstext -R -J -O -K >> example_07.ps
pstext -R -J -O -S0.75p -Gwhite << END >> example_07.ps
-43 -5 30 0 1 CM SOUTH
-43 -8 30 0 1 CM AMERICA
-7 11 30 0 1 CM AFRICA

END
\rm -f .gmt*

The same figure could equally well be made in color, which could be rasterized and made into a slide
for a meeting presentation. The script is similar to the one outlined above, except we would choose a color
for land and oceans, and select colored symbols and pens rather than black and white.
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Figure 7.7: A typical location map.

7.8 A 3-D histogram

The program psxyz allows us to plot three-dimensional symbols, including columnar plots. As a simple
demonstration, we will convert a gridded netCDF of bathymetry into an ASCII xyz table and use the height
information to draw a 2-D histogram in a 3-D perspective view. Our gridded bathymetry file is called
topo.grd and covers the region from 0 to 5

�

E and 0 to 5
�

N. Depth ranges from -5000 meter to sea-level.
We produce the illustration by running this command:

#!/bin/csh
# GMT EXAMPLE 08
#
# $Id: job08.csh,v 1.5 2004/04/10 17:19:14 pwessel Exp $
#
# Purpose: Make a 3-D bar plot
# GMT progs: grd2xyz, pstext, psxyz
# Unix progs: echo, rm
#
grd2xyz guinea_bay.grd >! $$
psxyz $$ -B1/1/1000:"Topography (m)"::.ETOPO5:WSneZ+ -R-0.1/5.1/-0.1/5.1/-5000/0 \

-P -JM5i -JZ6i -E200/30 -So0.0833333ub-5000 -U"Example 8 in Cookbook" -W0.25p -Glightgray -K >! \
example_08.ps

echo ’0.1 4.9 24 0 1 TL This is the surface of cube’ | pstext -R -J -JZ -Z0 -E200/30 -O \
>> example_08.ps

\rm -f $$ .gmt*

The output can be viewed in Figure 7.8.

7.9 Plotting time-series along tracks

A common application in many scientific disciplines involves plotting one or several time-series as as
“wiggles” along tracks. Marine geophysicists often display magnetic anomalies in this manner, and seis-
mologists use the technique when plotting individual seismic traces. In our example we will show how a
set of Geosat sea surface slope profiles from the south Pacific can be plotted as “wiggles” using the pswig-
gle program. We will embellish the plot with track numbers, the location of the Pacific-Antarctic Ridge,
recognized fracture zones in the area, and a “wiggle” scale. The Geosat tracks are stored in the files *.xys,
the ridge in ridge.xy, and all the fracture zones are stored in the multiple segment file fz.xy. We extract
the profile id (which is the first part of the file name for each profile) and the last point in each of the track
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Figure 7.8: A 3-D histogram.

files to construct an input file for pstext that will label each profile with the track number. We know the
profiles trend approximately N40

�

E so we want the labels to have that same orientation (i.e., the angle with
the baseline must be 50

�

). We do this by extracting the last record from each track, paste this file with the
tracks.lis file, and use $AWK to create the format needed for pstext. Note we offset the positions by -0.05
inch with –D in order to have a small gap between the profile and the label:

#!/bin/csh
# GMT EXAMPLE 09
#
# $Id: job09.csh,v 1.5 2004/04/10 17:19:14 pwessel Exp $
#
# Purpose: Make wiggle plot along track from geoid deflections
# GMT progs: pswiggle, pstext, psxy
# Unix progs: $AWK, ls, paste, tail, rm
#
pswiggle track_*.xys -R185/250/-68/-42 -U"Example 9 in Cookbook" -K -Jm0.13i -Ba10f5 -Gblack -Z2000 \

-W0.25p -S240/-67/500/@˜m@˜rad >! example_09.ps
psxy -R -J -O -K ridge.xy -W1.25p >> example_09.ps
psxy -R -J -O -K -M fz.xy -W0.5pta >> example_09.ps
if (-e tmp) then

\rm -f tmp
endif
foreach file (track_*.xys) # Make label file

tail -1 $file >> tmp
end
ls -1 track_*.xys | $AWK -F. ’{print $2}’ >! tracks.lis
paste tmp tracks.lis | $AWK ’{print $1, $2, 10, 50, 1, "RM", $4}’ | pstext -R -J -D-0.05i/-0.05i -O \

>> example_09.ps
\rm -f tmp tracks.lis .gmt*
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The output shows the sea-surface slopes along 42 descending Geosat tracks in the Eltanin and Udintsev
fracture zone region in a Mercator projection (Figure 7.9).
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Figure 7.9: Time-series as “wiggles” along a track.

7.10 A geographical bar graph plot

Our next and perhaps silliest example presents a three-dimensional bargraph plot showing the geographic
distribution of the membership in the American Geophysical Union (AGU). The input data was taken from
the 1991 AGU member directory and added up to give total members per continent. We decide to plot a 3-D
column centered on each continent with a height that is proportional to the logarithm of the membership. A
log10-scale is used since the memberships vary by almost 3 orders of magnitude. We choose a plain linear
projection for the basemap and add the columns and text on top. Our script reads:

#!/bin/csh
# GMT EXAMPLE 10
#
# $Id: job10.csh,v 1.8 2004/08/17 02:30:32 pwessel Exp $
#
# Purpose: Make 3-D bar graph on top of perspective map
# GMT progs: pscoast, pstext, psxyz
# Unix progs: $AWK, rm
#
pscoast -Rd -JX8id/5id -Dc -Gblack -E200/40 -K -U"Example 10 in Cookbook" \

>! example_10.ps
psxyz agu.d -R-180/180/-90/90/1/100000 -J -JZ2.5il -So0.3ib1 -Ggray -W0.5p -O -K -E200/40 \

-B60g60/30g30/a1p:Memberships:WSneZ >> example_10.ps
$AWK ’{print $1-10, $2, 20, 0, 0, "RM", $3}’ agu.d | pstext -Rd -J -O -K -E200/40 \

-Gwhite -S0.5p >> example_10.ps
echo "4.5 6 30 0 5 BC AGU 1991 Membership Distribution" | pstext -R0/11/0/8.5 -Jx1i -O \

>> example_10.ps
\rm -f .gmt*

The result is presented in Figure 7.10.
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Figure 7.10: Geographical bar graph.

7.11 Making a 3-D RGB color cube

In this example we generate a series of 6 color images, arranged in the shape of a cross, that can be cut out
and assembled into a 3-D color cube. The six faces of the cube represent the outside of the R-G-B color
space. On each face one of the color components is fixed at either 0 or 255 and the other two components
vary smoothly across the face from 0 to 255. The cube is configured as a right-handed coordinate system
with x-y-z mapping R-G-B. Hence, the 8 corners of the cube represent the primaries red, green, and blue,
plus the secondaries cyan, magenta and yellow, plus black and white.

The method for generating the 6 color faces utilizes $AWK in two steps. First, a z-grid is composed
which is 256 by 256 with z-values increasing in a planar fashion from 0 to 65535. This z-grid is common
to all six faces. The color variations are generated by creating a different color palette for each face using
the supplied $AWK script rgb cube.awk. This script generates a “cpt” file appropriate for each face using
arguments for each of the three color components. The arguments specify if that component (r� g � b) is to
be held fixed at 0 or 255, is to vary in x, or is to vary in y. If the color is to increase in x or y, a lower case
x or y is specified; if the color is to decrease in x or y, an upper case X or Y is used. Here is the shell script
and accompanying $AWK script to generate the RGB cube:

#!/bin/csh
# GMT EXAMPLE 11
#
# $Id: job11.csh,v 1.7 2004/04/10 17:19:14 pwessel Exp $
#
# Purpose: Create a 3-D RGB Cube
# GMT progs: gmtset, grdimage, grdmath, pstext, psxy
# Unix progs: $AWK, rm
#
# First create a Plane from (0,0,0) to (255,255,255).
# Only needs to be done once, and is used on each of the 6 faces of the cube.
#

grdmath -I1 -R0/255/0/255 Y 256 MUL X ADD = rgb_cube.grd

#
# For each of the 6 faces, create a color palette with one color (r,g,b) fixed
# at either the min. of 0 or max. of 255, and the other two components
# varying smoothly across the face from 0 to 255.
#
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# This uses $AWK script "rgb_cube.awk", with arguments specifying which color
# (r,g,b) is held constant at 0 or 255, which color varies in the x-direction
# of the face, and which color varies in the y-direction. If the color is to
# increase in x (y), a lower case x (y) is indicated; if the color is to
# decrease in the x (y) direction, an upper case X (Y) is used.
#
# Use grdimage to paint the faces and psxy to add "cut-along-the-dotted" lines.
#

gmtset TICK_LENGTH 0 COLOR_MODEL rgb

pstext -R0/8/0/11 -Jx1i < /dev/null -P -U"Example 11 in Cookbook" -K >! example_11.ps
$AWK -f rgb_cube.awk r=x g=y b=255 < /dev/null >! rgb_cube.cpt
grdimage rgb_cube.grd -Crgb_cube.cpt -JX2.5i/2.5i -R0/255/0/255 -K -O -X2i -Y4.5i -B256wesn \

>> example_11.ps

$AWK -f rgb_cube.awk r=255 g=y b=X < /dev/null >! rgb_cube.cpt
grdimage rgb_cube.grd -Crgb_cube.cpt -J -K -O -X2.5i -B256wesn >> example_11.ps

$AWK -f rgb_cube.awk r=x g=255 b=Y < /dev/null >! rgb_cube.cpt
grdimage rgb_cube.grd -Crgb_cube.cpt -J -K -O -X-2.5i -Y2.5i -B256wesn >> example_11.ps

psxy -W0.25pto -J -R -K -O -X2.5i << END >> example_11.ps
0 0
20 20
20 235
0 255
END

psxy -W0.25pto -J -R -K -O -X-2.5i -Y2.5i << END >> example_11.ps
0 0
20 20
235 20
255 0
END

psxy -W0.25pto -J -R -K -O -X-2.5i -Y-2.5i << END >> example_11.ps
255 0
235 20
235 235
255 255
END

$AWK -f rgb_cube.awk r=0 g=y b=x < /dev/null >! rgb_cube.cpt
grdimage rgb_cube.grd -Crgb_cube.cpt -J -K -O -Y-2.5i -B256wesn >> example_11.ps

$AWK -f rgb_cube.awk r=x g=0 b=y < /dev/null >! rgb_cube.cpt
grdimage rgb_cube.grd -Crgb_cube.cpt -J -K -O -X2.5i -Y-2.5i -B256wesn >> example_11.ps

echo "10 10 14 0 Times-BoldItalic BL GMT 4" | pstext -J -R -Gwhite -K -O >> example_11.ps

psxy -W0.25pto -J -R -K -O -X2.5i << END >> example_11.ps
0 0
20 20
20 235
0 255
END

psxy -W0.25pto -J -R -K -O -X-5i << END >> example_11.ps
255 0
235 20
235 235
255 255
END

$AWK -f rgb_cube.awk r=x g=Y b=0 < /dev/null >! rgb_cube.cpt
grdimage rgb_cube.grd -Crgb_cube.cpt -J -K -O -X2.5i -Y-2.5i -B256wesn >> example_11.ps

psxy -W0.25pto -J -R -K -O -X2.5i << END >> example_11.ps
0 0
20 20
20 235
0 255
END

psxy -W0.25pto -J -R -O -X-5i << END >> example_11.ps
255 0
235 20
235 235
255 255
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END

\rm -f rgb_cube.cpt rgb_cube.grd .gmtcommands4 .gmtdefaults4

The $AWK script rgb cube.awk is as follows:

# $Id: rgb_cube.awk,v 1.1.1.1 2000/12/28 01:23:45 gmt Exp $
END{

z=-.5;

if(r=="X" || g=="X" || b=="X"){
xl=255; xr=0; xd=-255;

}else{
xl=0; xr=255; xd=255;

}

if(r=="Y" || g=="Y" || b=="Y"){
yb=255; yt=-1; yd=-1;

}else{
yb=0; yt=256; yd=1;

}

for(y=yb; y!=yt; y+=yd){

x=xl;

if(r=="x" || r=="X"){
if(g=="y" || g=="Y"){

printf("%7.1f %3d %3d %3d " ,z,x,y,b);
x+=xd; z+=256;
printf("%7.1f %3d %3d %3d\n",z,x,y,b);

}else{
printf("%7.1f %3d %3d %3d " ,z,x,g,y);
x+=xd; z+=256;
printf("%7.1f %3d %3d %3d\n",z,x,g,y);

}

}else if(g=="x" || g=="X"){
if(r=="y" || r=="Y"){

printf("%7.1f %3d %3d %3d " ,z,y,x,b);
x+=xd; z+=256;
printf("%7.1f %3d %3d %3d\n",z,y,x,b);

}else{
printf("%7.1f %3d %3d %3d " ,z,r,x,y);
x+=xd; z+=256;
printf("%7.1f %3d %3d %3d\n",z,r,x,y);

}

}else{
if(r=="y" || r=="Y"){

printf("%7.1f %3d %3d %3d " ,z,y,g,x);
x+=xd; z+=256;
printf("%7.1f %3d %3d %3d\n",z,y,g,x);

}else{
printf("%7.1f %3d %3d %3d " ,z,r,y,x);
x+=xd; z+=256;
printf("%7.1f %3d %3d %3d\n",z,r,y,x);

}
}

}
exit;

}

The cube can be viewed in Figure 7.11.

7.12 Optimal triangulation of data

Our next example (Figure 7.12) operates on a data set of topographic readings non-uniformly distributed in
the plane (Table 5.11 in Davis: Statistics and Data Analysis in Geology, J. Wiley). We use triangulate to
perform the optimal Delaunay triangulation, then use the output to draw the resulting network. We label the
node numbers as well as the node values, and call pscontour to make a contour map and image directly
from the raw data. Thus, in this example we do not actually make gridded files but still are able to contour



CHAPTER 7. COOK-BOOK 80

GMT 4

Figure 7.11: The RGB color cube.

and image the data. We use a color palette table topo.cpt (supplied with the script data separately). The
script becomes:

#!/bin/csh
# GMT EXAMPLE 12
#
# $Id: job12.csh,v 1.7 2004/07/14 00:46:17 pwessel Exp $
#
# Purpose: Illustrates Delaunay triangulation of points, and contouring
# GMT progs: makecpt, minmax, pscontour, pstext, psxy, triangulate
# Unix progs: $AWK, echo, rm
#
# First draw network and label the nodes
triangulate table_5.11 -M >! net.xy
psxy -R0/6.5/-0.2/6.5 -JX3.06i/3.15i -B2f1WSNe -M net.xy -W0.5p -P -K -Y4.65i >! example_12.ps
psxy table_5.11 -R -J -O -K -Sc0.12i -Gwhite -W0.25p >> example_12.ps
$AWK ’{print $1, $2, 6, 0, 0, "CM", NR-1}’ table_5.11 | \

pstext -R -J -O -K >> example_12.ps
# Then draw network and print the node values
psxy -R -J -B2f1eSNw -M net.xy -W0.5p -O -K -X3.25i >> example_12.ps
psxy -R -J -O -K table_5.11 -Sc0.03i -Gblack >> example_12.ps
$AWK ’{printf "%g %s 6 0 0 LM %g\n", $1, $2, $3}’ table_5.11 | pstext -R -J -O -K -W255o \

-C0.01i/0.01i -D0.08i/0i -N >> example_12.ps
# Then contour the data and draw triangles using dashed pen
# Use "minmax" and "makecpt" to make a color palette (.cpt) file
set z = ‘minmax table_5.11 -C -I25‘
makecpt -Cjet -T$z[5]/$z[6]/25 >! topo.cpt
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pscontour -R -J table_5.11 -B2f1WSne -W0.75p -Ctopo.cpt -L0.25pta -G1i/0 -X-3.25i -Y-3.65i -O -K \
-U"Example 12 in Cookbook" >> example_12.ps

# Finally color the topography
pscontour -R -J table_5.11 -B2f1eSnw -Ctopo.cpt -I -X3.25i -O -K >> example_12.ps
echo "3.16 8 30 0 1 BC Delaunay Triangulation" | pstext -R0/8/0/11 -Jx1i -O -X-3.25i >> example_12.ps
#
\rm -f net.xy topo.cpt .gmt*
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Figure 7.12: Optimal triangulation of data.

7.13 Plotting of vector fields

In many areas, such as fluid dynamics and elasticity, it is desirable to plot vector fields of various kinds.
provides a way to illustrate 2-component vector fields using the grdvector utility. The two com-

ponents of the field (Cartesian or polar components) are stored in separate grdfiles. In this example we
use grdmath to generate a surface z

�
x � y � � x � exp

�
� x2

� y2 � and to calculate ∇z by returning the x-
and y-derivatives separately. We superpose the gradient vector field and the surface z and also plot the
components of the gradient in separate windows:

#!/bin/csh
# GMT EXAMPLE 13
#
# $Id: job13.csh,v 1.4 2003/12/18 02:27:21 pwessel Exp $
#
# Purpose: Illustrate vectors and contouring
# GMT progs: grdmath, grdcontour, pstext
# Unix progs: echo, rm
#
grdmath -R-2/2/-2/2 -I0.1 X Y R2 NEG EXP X MUL = z.grd
grdmath z.grd DDX = dzdx.grd
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grdmath z.grd DDY = dzdy.grd
grdcontour dzdx.grd -JX3i -B1/1WSne -C0.1 -A0.5 -K -P -G2i/10 -S4 -T0.1i/0.03i \

-U"Example 13 in Cookbook" >! example_13.ps
grdcontour dzdy.grd -J -B1/1WSne -C0.05 -A0.2 -O -K -G2i/10 -S4 -T0.1i/0.03i -X3.45i >> example_13.ps
grdcontour z.grd -J -B1/1WSne -C0.05 -A0.1 -O -K -G2i/10 -S4 -T0.1i/0.03i -X-3.45i -Y3.45i \

>> example_13.ps
grdcontour z.grd -J -B1/1WSne -C0.05 -O -K -G2i/10 -S4 -X3.45i >> example_13.ps
grdvector dzdx.grd dzdy.grd -I0.2 -J -O -K -Q0.03i/0.1i/0.09in0.25i -G0 -S5i >> example_13.ps
echo "3.2 3.6 40 0 6 BC z(x,y) = x * exp(-x@+2@+-y@+2@+)" | pstext -R0/6/0/4.5 -Jx1i -O -X-3.45i \

>> example_13.ps
\rm -f z.grd dzdx.grd dzdy.grd .gmt*

A pstext call to place a header finishes the plot (Figure 7.13.
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Figure 7.13: Display of vector fields in GMT.

7.14 Gridding of data and trend surfaces

This example shows how one goes from randomly spaced data points to an evenly sampled surface. First we
plot the distribution and values of our raw data set (table 5.11 from example 12). We choose an equidistant
grid and run blockmean which preprocesses the data to avoid aliasing. The dashed lines indicate the
logical blocks used by blockmean; all points inside a given bin will be averaged. The logical blocks
are drawn from a temporary file we make on the fly within the shell script. The processed data is then
gridded with the surface program and contoured every 25 units. A most important point here is that
blockmean, blockmedian, or blockmode should always be run prior to running surface, and both of
these steps must use the same grid interval. We use grdtrend to fit a bicubic trend surface to the gridded
data, contour it as well, and sample both gridded files along a diagonal transect using grdtrack. The
bottom panel compares the gridded (solid line) and bicubic trend (dashed line) along the transect using
psxy (Figure 7.14):

#!/bin/csh
# GMT EXAMPLE 14
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#
# $Id: job14.csh,v 1.8 2004/06/02 22:52:32 pwessel Exp $
#
# Purpose: Showing simple gridding, contouring, and resampling along tracks
# GMT progs: blockmean, grdcontour, grdtrack, grdtrend, minmax, project
# pstext, psbasemap, psxy, surface
# Unix progs: $AWK, rm
#
# First draw network and label the nodes
gmtset GRID_PEN_PRIMARY 0.25p,-
psxy table_5.11 -R0/7/0/7 -JX3.06i/3.15i -B2f1WSNe -Sc0.05i -Gblack -P -K -Y6.45i >! example_14.ps
$AWK ’{printf "%g %s 6 0 0 LM %g\n", $1+0.08, $2, $3}’ table_5.11 | pstext -R -J -O -K -N \

>> example_14.ps
blockmean table_5.11 -R0/7/0/7 -I1 >! mean.xyz
# Then draw blockmean cells
psbasemap -R0.5/7.5/0.5/7.5 -J -O -K -B0g1 -X3.25i >> example_14.ps
psxy -R0/7/0/7 -J -B2f1eSNw mean.xyz -Ss0.05i -Gblack -O -K >> example_14.ps
$AWK ’{printf "%g %s 6 0 0 LM %g\n", $1+0.1, $2, $3}’ mean.xyz | pstext -R -J -O -K -W255o \

-C0.01i/0.01i -N >> example_14.ps
# Then surface and contour the data
surface mean.xyz -R -I1 -Gdata.grd
grdcontour data.grd -J -B2f1WSne -C25 -A50 -G3i/10 -S4 -O -K -X-3.25i -Y-3.55i >> example_14.ps
psxy -R -J mean.xyz -Ss0.05i -Gblack -O -K >> example_14.ps
# Fit bicubic trend to data and compare to gridded surface
grdtrend data.grd -N10 -Ttrend.grd
project -C0/0 -E7/7 -G0.1 > track
grdcontour trend.grd -J -B2f1wSne -C25 -A50 -Glct/cb -S4 -O -K -X3.25i >> example_14.ps
psxy -R -J track -W1pto -O -K >> example_14.ps
# Sample along diagonal
grdtrack track -Gdata.grd | cut -f3,4 >! data.d
grdtrack track -Gtrend.grd | cut -f3,4 >! trend.d
psxy ‘minmax data.d trend.d -I0.5/25‘ -JX6.3i/1.4i data.d -W1p -O -K -X-3.25i -Y-1.9i -B1/50WSne \

>> example_14.ps
psxy -R -J trend.d -W0.5pta -O -U"Example 14 in Cookbook" >> example_14.ps
\rm mean.xyz track *.grd *.d .gmt*

7.15 Gridding, contouring, and masking of unconstrained areas

This example (Figure 7.15) demonstrates some off the different ways one can use to grid data in ,
and how to deal with unconstrained areas. We first convert a large ASCII file to binary with gmtconvert
since the binary file will read and process much faster. Our lower left plot illustrates the results of gridding
using a nearest neighbor technique (nearneighbor) which is a local method: No output is given where
there are no data. Next (lower right), we use a minimum curvature technique (surface) which is a global
method. Hence, the contours cover the entire map allthough the data are only available for portions of
the area (indicated by the gray areas plotted using psmask). The top left scenario illustrates how we can
create a clip path (using psmask) based on the data coverage to eliminate contours outside the constrained
area. Finally (top right) we simply employ pscoast to overlay gray landmasses to cover up the unwanted
contours, and end by plotting a star at the deepest point on the map with psxy. This point was extracted
from the gridded files using grdinfo.

#!/bin/csh
# GMT EXAMPLE 15
#
# $Id: job15.csh,v 1.4 2004/04/10 17:19:14 pwessel Exp $
#
# Purpose: Gridding and clipping when data are missing
# GMT progs: blockmedian, gmtconvert, grdclip, grdcontour, grdinfo, minmax,
# nearneighbor, pscoast, psmask, pstext, surface
# Unix progs: awk, echo, rm
#
gmtconvert ship.xyz -bo >! ship.b
set region = ‘minmax ship.b -I1 -bi3‘
nearneighbor $region -I10m -S40k -Gship.grd ship.b -bi3
set info = ‘grdinfo -C -M ship.grd‘
grdcontour ship.grd -JM3i -P -B2WSne -C250 -A1000 -G2i -K -U"Example 15 in Cookbook" >! example_15.ps
#
blockmedian $region -I10m ship.b -bi3 -bo >! ship_10m.b
surface $region -I10m ship_10m.b -Gship.grd -bi3
psmask $region -I10m ship.b -J -O -K -T -Glightgray -bi3 -X3.6i >> example_15.ps
grdcontour ship.grd -J -B2WSne -C250 -L-8000/0 -A1000 -G2i -O -K >> example_15.ps
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Figure 7.14: Gridding of data and trend surfaces.

#
psmask $region -I10m ship_10m.b -bi3 -J -B2WSne -O -K -X-3.6i -Y3.75i >> example_15.ps
grdcontour ship.grd -J -C250 -A1000 -L-8000/0 -G2i -O -K >> example_15.ps
psmask -C -O -K >> example_15.ps
#
grdclip ship.grd -Sa-1/NaN -Gship_clipped.grd
grdcontour ship_clipped.grd -J -B2WSne -C250 -A1000 -L-8000/0 -G2i -O -K -X3.6i >> example_15.ps
pscoast $region -J -O -K -Ggray -W0.25p >> example_15.ps
echo $info[12] $info[13] | psxy -R -J -O -K -Sa0.15i -W1p >> example_15.ps
echo "-0.3 3.6 24 0 1 CB Gridding with missing data" | pstext -R0/3/0/4 -Jx1i -O -N >> example_15.ps
\rm -f ship.b ship_10m.b ship.grd ship_clipped.grd .gmt*

7.16 Gridding of data, continued

pscontour (for contouring) and triangulate (for gridding) use the simplest method of interpolating data:
a Delaunay triangulation (see Example 12) which forms z

�
x � y � as a union of planar triangular facets. One

advantage of this method is that it will not extrapolate z
�
x � y � beyond the convex hull of the input (x,

y) data. Another is that it will not estimate a z value above or below the local bounds on any triangle.
A disadvantage is that the z

�
x � y � surface is not differentiable, but has sharp kinks at triangle edges and

thus also along contours. This may not look physically reasonable, but it can be filtered later (last panel
below). surface can be used to generate a higher-order (smooth and differentiable) interpolation of z

�
x � y �

onto a grid, after which the grid may be illustrated (grdcontour, grdimage, grdview). surface will
interpolate to all (x, y) points in a rectangular region, and thus will extrapolate beyond the convex hull of
the data. However, this can be masked out in various ways (see Example 15).
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Figure 7.15: Gridding, contouring, and masking of data.

A more serious objection is that surface may estimate z values outside the local range of the data (note
area near x = 0.8, y = 5.3). This commonly happens when the default tension value of zero is used to create
a “minimum curvature” (most smooth) interpolant. surface can be used with non-zero tension to partially
overcome this problem. The limiting value tension � 1 should approximate the triangulation, while a value
between 0 and 1 may yield a good compromise between the above two cases. A value of 0.5 is shown here
(Figure 7.16). A side effect of the tension is that it tends to make the contours turn near the edges of the
domain so that they approach the edge from a perpendicular direction. A solution is to use surface in a
larger area and then use grdcut to cut out the desired smaller area. Another way to achieve a compromise
is to interpolate the data to a grid and then filter the grid using grdfft or grdfilter. The latter can handle
grids containing “NaN” values and it can do median and mode filters as well as convolutions. Shown here
is triangulate followed by grdfilter. Note that the filter has done some extrapolation beyond the convex
hull of the original x, y values. The “best” smooth approximation of z

�
x � y � depends on the errors in the data

and the physical laws obeyed by z. cannot always do the “best” thing but it offers great flexibility
through its combinations of tools. We illustrate all four solutions using a cpt file that contains color fills,
patterns, and a “skip slice” request for 700 �

z
� 725.

#!/bin/csh
# GMT EXAMPLE 16
#
# $Id: job16.csh,v 1.7 2004/04/13 21:32:27 pwessel Exp $
#
# Purpose: Illustrates interpolation methods using same data as Example 12.
# GMT progs: gmtset, grdview, grdfilter, pscontour, psscale, pstext, surface, triangulate
# Unix progs: echo, rm
#
# First make a cpt file as in example 12:
#
#set z = ‘minmax table_5.11 -C -I25‘
#makecpt -Crainbow -T$z[5]/$z[6]/25 >! ex16.cpt
#Hand edit to add patterns and skips
#
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# Now illustrate various means of contouring, using triangulate and surface.
#
gmtset ANNOT_FONT_SIZE_PRIMARY 9
#
pscontour -R0/6.5/-0.2/6.5 -Jx0.45i -P -K -Y5.5i -Ba2f1WSne table_5.11 -Cex16.cpt -I \

>! example_16.ps
echo "3.25 7 18 0 4 CB pscontour (triangulate)" | pstext -R -J -O -K -N >> example_16.ps
#
surface table_5.11 -R -I0.1 -Graws0.grd
grdview raws0.grd -R -J -Ba2f1WSne -Cex16.cpt -Qs -O -K -X3.5i >> example_16.ps
echo "3.25 7 18 0 4 CB surface (tension = 0)" | pstext -R -J -O -K -N >> example_16.ps
#
surface table_5.11 -R -I0.1 -Graws5.grd -T0.5
grdview raws5.grd -R -J -Ba2f1WSne -Cex16.cpt -Qs -O -K -Y-3.75i -X-3.5i >> example_16.ps
echo "3.25 7 18 0 4 CB surface (tension = 0.5)" | pstext -R -J -O -K -N >> example_16.ps
#
triangulate table_5.11 -Grawt.grd -R -I0.1 > /dev/null
grdfilter rawt.grd -Gfiltered.grd -D0 -Fc1
grdview filtered.grd -R -J -Ba2f1WSne -Cex16.cpt -Qs -O -K -X3.5i >> example_16.ps
echo "3.25 7 18 0 4 CB triangulate @˜\256@˜ grdfilter" | pstext -R -J -O -K -N >> example_16.ps
echo "3.2125 7.5 32 0 4 CB Gridding of Data" | pstext -R0/10/0/10 -Jx1i -O -K -N -X-3.5i \

>> example_16.ps
psscale -D3.25i/0.35i/5i/0.25ih -Cex16.cpt -O -U"Example 16 in Cookbook" -Y-0.75i >> example_16.ps
#
\rm -f *.grd .gmt*
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Figure 7.16: More ways to grid data.

7.17 Images clipped by coastlines

This example demonstrates how pscoast can be used to set up clippaths based on coastlines. This ap-
proach is well suited when different gridded data sets are to be merged on a plot using different color



CHAPTER 7. COOK-BOOK 87

palette files. Merging the files themselves may not be doable since they may represent different data sets,
as we show in this example. Here, we lay down a color map of the geoid field near India with grdimage,
use pscoast to set up land clippaths, and then overlay topography from the ETOPO5 data set with an-
other call to grdimage. We finally undo the clippath with a second call to pscoast with the option –Q
(Figure 7.17):

#!/bin/csh
# GMT EXAMPLE 17
#
# $Id: job17.csh,v 1.2 2003/12/18 02:27:21 pwessel Exp $
#
# Purpose: Illustrates clipping of images using coastlines
# GMT progs: grd2cpt, grdgradient, grdimage, pscoast, pstext
# Unix progs: rm
#
# Get Geoid and Topography for the region
#grdraster 1 -R60/90/-10/25 -Gindia_topo.grd
#grdraster 4 -R60/90/-10/25 -Gindia_geoid.grd

# First generate geoid image w/ shading

grd2cpt india_geoid.grd -Crainbow >! geoid.cpt
grdgradient india_geoid.grd -Nt1 -A45 -Gindia_geoid_i.grd
grdimage india_geoid.grd -Iindia_geoid_i.grd -JM6.5i -Cgeoid.cpt -P -K -U"Example 17 in Cookbook" \

>! example_17.ps

# Then use pscoast to initiate clip path for land

pscoast -R60/90/-10/25 -J -O -K -Dl -Gc >> example_17.ps

# Now generate topography image w/shading

echo "-10000 150 10000 150" >! gray.cpt
grdgradient india_topo.grd -Nt1 -A45 -Gindia_topo_i.grd
grdimage india_topo.grd -Iindia_topo_i.grd -J -Cgray.cpt -O -K >> example_17.ps

# Finally undo clipping and overlay basemap

pscoast -R -J -O -K -Q -B10f5:."Clipping of Images": >> example_17.ps

# Add a text paragraph

pstext -R -J -O -M -W255O0.5p -D-0.1i/0.1i << EOF >> example_17.ps
> 90 -10 12 0 4 RB 12p 3i j
@_@%5%Example 17.@%%@_ We first plot the color geoid image
for the entire region, followed by a gray-shaded @#etopo5@#
image that is clipped so it is only visible inside the coastlines.
EOF

# Clean up

\rm -f geoid.cpt gray.cpt *_i.grd .gmt*

7.18 Volumes and Spatial Selections

To demonstrate potential usage of the new programs grdvolume and gmtselect we extract a subset of
the Sandwell & Smith altimetric gravity field3 for the northern Pacific and decide to isolate all seamounts
that (1) exceed 50 mGal in amplitude and (2) are within 200 km of the Pratt seamount. We do this by
dumping the 50 mGal contours to disk, then making a simple $AWK script center.awk that returns the
mean location of the points making up each closed polygon, and then pass these locations to gmtselect
which retains only the points within 200 km of Pratt. We then mask out all the data outside this radius and
use grdvolume to determine the combined area and volumes of the chosen seamounts.

#!/bin/csh
# GMT EXAMPLE 18
#
# $Id: job18.csh,v 1.4 2004/04/13 21:32:27 pwessel Exp $

3See http://topex.ucsd.edu/marine grav/mar grav.html.
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Figure 7.17: Clipping of images using coastlines.

#
# Purpose: Illustrates volumes of grids inside contours and spatial
# selection of data
# GMT progs: gmtset, gmtselect, grdclip, grdcontour, grdgradient, grdimage,
# grdmath, grdvolume, makecpt, pscoast, psscale, pstext, psxy
# Unix progs: $AWK, cat, rm
#
# Get Sandwell/Smith gravity for the region
#img2latlongrd world_grav.img.7.2 -R-149/-135/52.5/58 -GAK_gulf_grav.grd -T1

# Use spherical projection since SS data define on sphere
gmtset ELLIPSOID Sphere

# Define location of Pratt seamount
echo "-142.65 56.25" >! pratt.d

# First generate gravity image w/ shading, label Pratt, and draw a circle
# of radius = 200 km centered on Pratt.

makecpt -Crainbow -T-60/60/10 -Z >! grav.cpt
grdgradient AK_gulf_grav.grd -Nt1 -A45 -GAK_gulf_grav_i.grd
grdimage AK_gulf_grav.grd -IAK_gulf_grav_i.grd -JM5.5i -Cgrav.cpt -B2f1 -P -K -X1.5i -Y5.85i \

>! example_18.ps
pscoast -R-149/-135/52.5/58 -J -O -K -Di -Ggray -W0.25p >> example_18.ps
psscale -D2.75i/-0.4i/4i/0.15ih -Cgrav.cpt -B20f10/:mGal: -O -K >> example_18.ps
$AWK ’{print $1, $2, 12, 0, 1, "LB", "Pratt"}’ pratt.d | pstext -R -J -O -K -D0.1i/0.1i \

>> example_18.ps
$AWK ’{print $1, $2, 0, 200, 200}’ pratt.d | psxy -R -J -O -K -SE -W0.25p >> example_18.ps

# Then draw 10 mGal contours and overlay 50 mGal contour in green

grdcontour AK_gulf_grav.grd -J -C20 -B2f1WSEn -O -K -U/-1.25i/-0.75i/"Example 18 in Cookbook" \
-Y-4.85i >> example_18.ps

grdcontour AK_gulf_grav.grd -J -C10 -L49/51 -O -K -Dsm -Wc0.75p/0/255/0 >> example_18.ps
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pscoast -R -J -O -K -Di -Ggray -W0.25p >> example_18.ps
$AWK ’{print $1, $2, 0, 200, 200}’ pratt.d | psxy -R -J -O -K -SE -W0.25p >> example_18.ps
\rm -f sm_*[0-9].xyz # Only consider closed contours

# Now determine centers of each enclosed seamount > 50 mGal but only plot
# the ones within 200 km of Pratt seamount.

# First make a simple $AWK script that returns the average position
# of a file with coordinates x, y (remember to escape the $ sign)

cat << EOF >! center.awk
BEGIN {

x = 0
y = 0
n = 0

}
{

x += \$1
y += \$2
n++

}
END {

print x/n, y/n
}
EOF

# Now determine mean location of each closed contour and
# add it to the file centers.d

\rm -f centers.d
foreach file (sm_*.xyz)

$AWK -f center.awk $file >>! centers.d
end

# Only plot the ones within 200 km

gmtselect -R -J -C200/pratt.d centers.d >! $$
psxy $$ -R -J -O -K -SC0.04i -Gred -W0.25p >> example_18.ps
psxy -R -J -O -K -ST0.1i -Gyellow -W0.25p pratt.d >> example_18.ps

# Then report the volume and area of these seamounts only
# by masking out data outside the 200 km-radius circle
# and then evaluate area/volume for the 50 mGal contour

grdmath -R -I2m -F -142.65 56.25 GDIST = mask.grd
grdclip mask.grd -Sa200/NaN -Sb200/1 -Gmask.grd
grdmath AK_gulf_grav.grd mask.grd MUL = tmp.grd
set info = ‘grdvolume tmp.grd -C50 -Sk‘

psxy -R -J -A -O -K -L -W0.75p -Gwhite << EOF >> example_18.ps
-148.5 52.75
-140.5 52.75
-140.5 53.75
-148.5 53.75
EOF
pstext -R -J -O << EOF >> example_18.ps
-148 53.08 14 0 1 LM Areas: $info[2] km@+2@+
-148 53.42 14 0 1 LM Volumes: $info[3] mGal\264km@+2@+
EOF

# Clean up

\rm -f $$ grav.cpt sm_*.xyz *_i.grd tmp.grd mask.grd pratt.d center* .gmt*

Our illustration is presented in Figure 7.18.

7.19 Color patterns on maps

3.1 introduced color patterns and this examples give a few cases of how to use this new feature. We
make a phony poster that advertises an international conference on in Honolulu. We use grdmath,
makecpt, and grdimage to draw pleasing color backgrounds on maps, and overlay pscoast clippaths
to have the patterns change at the coastlines. The middle panel demonstrates a simple pscoast call
where the built-in pattern # 86 is drawn at 100 dpi but with the black and white pixels replaced with
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Figure 7.18: Volumes and geo-spatial selections.

color combinations. The final panel repeats the top panel except that the land and sea images have changed
places (Figure 7.19).

#!/bin/csh
# GMT EXAMPLE 19
#
# $Id: job19.csh,v 1.7 2004/06/10 17:45:32 pwessel Exp $
#
# Purpose: Illustrates various color pattern effects for maps
# GMT progs: gmtset, grdimage, grdmath, makecpt, pscoast, pstext
# Unix progs: rm
#
# First make a worldmap with graded blue oceans and rainbow continents

gmtset COLOR_MODEL rgb
grdmath -Rd -I1 -F Y COSD 2 POW = lat.grd
grdmath -Rd -I1 -F X = lon.grd
echo "0 255 255 255 1 0 0 255" >! lat.cpt
makecpt -Crainbow -T-180/180/60 -Z >! lon.cpt
grdimage lat.grd -JI0/6.5i -Clat.cpt -P -K -Y7.5i -B0 >! example_19.ps
pscoast -R -J -O -K -Dc -A5000 -Gc >> example_19.ps
grdimage lon.grd -J -Clon.cpt -O -K >> example_19.ps
pscoast -R -J -O -K -Q >> example_19.ps
pscoast -R -J -O -K -Dc -A5000 -W0.25p >> example_19.ps
echo "0 20 32 0 1 CM 3RD INTERNATIONAL" | pstext -R -J -O -K -Gred -S0.5p >> example_19.ps
echo "0 -10 32 0 1 CM GMT CONFERENCE" | pstext -R -J -O -K -Gred -S0.5p >> example_19.ps
echo "0 -30 18 0 1 CM Honolulu, Hawaii, April 1, 2005" | pstext -R -J -O -K -Ggreen -S0.25p \

>> example_19.ps

# Then show example of color patterns

pscoast -R -J -O -K -Dc -A5000 -Gp100/86:FredByellow -Sp100/7:FredBblack -B0 -Y-3.25i \
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>> example_19.ps
echo "0 15 32 0 1 CM SILLY USES OF" | pstext -R -J -O -K -Glightgreen -S0.5p >> example_19.ps
echo "0 -15 32 0 1 CM GMT COLOR PATTERNS" | pstext -R -J -O -K -Gmagenta -S0.5p >> example_19.ps

# Finally repeat 1st plot but exchange the patterns

grdimage lon.grd -J -Clon.cpt -O -K -Y-3.25i -B0 -U"Example 19 in Cookbook" >> example_19.ps
pscoast -R -J -O -K -Dc -A5000 -Gc >> example_19.ps
grdimage lat.grd -J -Clat.cpt -O -K >> example_19.ps
pscoast -R -J -O -K -Q >> example_19.ps
pscoast -R -J -O -K -Dc -A5000 -W0.25p >> example_19.ps
echo "0 20 32 0 1 CM 3RD INTERNATIONAL" | pstext -R -J -O -K -Gred -S0.5p >> example_19.ps
echo "0 -10 32 0 1 CM GMT CONFERENCE" | pstext -R -J -O -K -Gred -S0.5p >> example_19.ps
echo "0 -30 18 0 1 CM Honolulu, Hawaii, April 1, 2005" | pstext -R -J -O -Ggreen -S0.25p \

>> example_19.ps

\rm -f l*.grd l*.cpt .gmt*

3RD INTERNATIONAL
GMT CONFERENCE

Honolulu, Hawaii, April 1, 2005

SILLY USES OF
GMT COLOR PATTERNS

3RD INTERNATIONAL
GMT CONFERENCE

Honolulu, Hawaii, April 1, 2005

Figure 7.19: Using color patterns in illustrations.

7.20 Custom plot symbols

One is often required to make special maps that shows the distribution of certain features but one would
prefer to use a custom symbol instead of the built-in circles, squares, triangles, etc. in the plotting
programs psxy and psxyz. Here we demonstrate one approach that allows for a fair bit of flexibility in
designing ones own symbols. The following recipe is used when designing a new symbol.
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1. Use psbasemap (or engineering paper!) to set up an empty grid that goes from -0.5 to +0.5 in both
x and y. Use ruler and compass to draw your new symbol using straight lines, arcs of circles, and
stand-alone geometrical objects (see psxy man page for a full deccription of symbol design). This
is how your symbol will look when a size of 1 inch is chosen. Figure 7.20 illustrates a new symbol
we will call volcano.

−0.50

−0.25

0.00

0.25

0.50

−0.50 −0.25 0.00 0.25 0.50

Figure 7.20: Making a new volcano symbol for GMT.

2. After designing the symbol we will encode it using a simple set of rules. In our case we describe our
volcano using these three freeform polygon generators:

x0 y0 M [ –Gfill ] [ –Wpen ] Start new element at x0, y0

x1 y1 D Draw straight line from current point to x1, y1 around (x0, y0)
x0 y0 r α1 α2 A Draw arc segment of radius r from angle α1 to α2

We also add a few stand-alone circles (for other symbols, see psxy man page):

x0 y0 r c [ –Gfill ] [ –Wpen ] Draw single circle of radius r around x0, y0

The optional –G and –W can be used to hardwire the color fill and pen for segments (use – to disallow
fill or line for any specific feature). By default the segments are painted based on the values of the
command line settings.

Manually applying these rules to our symbol results in a definition file volcano.def:

# $Id: volcano.def,v 1.5 2004/04/13 21:32:27 pwessel Exp $
#
# Definition file for a volcano symbol
# To be used with psxy as -Skvolcano/<size>.
# The symbol will be painted and drawn given the
# -G -L -W options on the psxy command line.
#
-0.5 -0.5 M
-0.2 0 D
-0.1 0.173205081 0.4 240 300 A
0.3 -0.5 D
-0.5 -0.5 D
-0.05 0.15 0.2 c
0.15 0.3 0.15 c
0.325 0.4 0.1 c
0.45 0.45 0.05 c

The values refer to positions and dimensions illustrated in Figure 7.20 above.
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3. Given a proper definition file we may now use it with psxy or psxyz.

We are now ready to give it a try. Based on the hotspot locations in the file hotspots.d (with a 3rd column
giving the desired symbol sizes in inches) we lay down a world map and overlay red volcano symbols using
our custom-built volcano symbol and psxy. Without further discussion we also make a definition for a
multi- colored bulls-eye symbol:

# $Id: bullseye.def,v 1.4 2004/04/13 21:32:27 pwessel Exp $
#
# Segment info file for bullseye symbol
# These instructions are intended for make_symbol
# which will generate an awk-script that creates
# multiple-segment output describing the desired
# symbol at the chosen size. The symbol will be
# painted drawn given the -G -W options for each
# segment.
#
0 -0.7 M -W0.5p,red
0 0.7 D
-0.7 0 M -W0.5p,red
0.7 0 D
0 0 0.9 c -Gp0/12
0 0 0.9 c -W0.25p
0 0 0.7 c -Gyellow -W0.25p
0 0 0.5 c -Gp0/9
0 0 0.5 c -W0.25p
0 0 0.3 c -Gyellow -W0.25p
0 0 0.1 c -Gwhite -W0.25p

Here is our final map script:

#!/bin/csh
# GMT EXAMPLE 20
#
# $Id: job20.csh,v 1.6 2004/04/13 21:39:49 pwessel Exp $
#
# Purpose: Extend GMT to plot custom symbols
# GMT progs: pscoast, psxy
# Unix progs: rm
#
# Plot a world-map with volcano symbols of different sizes
# on top given locations and sizes in hotspots.d

cat << EOF >! hotspots.d
55.5 -21.0 0.25
63.0 -49.0 0.25
-12.0 -37.0 0.25
-28.5 29.34 0.25
48.4 -53.4 0.25
155.5 -40.4 0.25
-155.5 19.6 0.5
-138.1 -50.9 0.25
-153.5 -21.0 0.25
-116.7 -26.3 0.25
-16.5 64.4 0.25
EOF

pscoast -Rg -JR180/9i -B60/30:."Hotspot Islands and Cities": -Gdarkgreen -Slightblue \
-Dc -A5000 -K -U"Example 20 in Cookbook" >! example_20.ps

psxy -R -J hotspots.d -Skvolcano -O -K -W0.25p -Gred >> example_20.ps

# Overlay a few bullseyes at NY, Cairo, and Perth

cat << EOF >! cities.d
286 40.45 0.8
31.15 30.03 0.8
115.49 -31.58 0.8
EOF

psxy -R -J cities.d -Skbullseye -O >> example_20.ps

\rm -f hotspots.d cities.d .gmt*

which produces the plot in Figure 7.21.
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Figure 7.21: Using custom symbols in GMT.

Given these guidelines you can easily make your own symbols. Symbols with more than one color
can be obtained by making several symbol components. E.g., to have yellow smoke coming out of red
volcanoes we would make two symbols: one with just the cone and caldera and the other with the bubbles.
These would be plotted consecutively using the desired colors. Alternatively, like in bullseye.def, we may
specify colors directly for the various segments. Note that the custom symbols (Appendix N), unlike the
built-in symbols in , can be used with the built-in patterns (Appendix E). Other approaches are also
possible, of course.

7.21 Time-series of RedHat stock price

As discussed in Section 4.4.3, the annotation of time-series is generally more complicated due to the extra
degrees of freedom afforded by the dual annotation system. In this example we will display the trend of
the stock price of RedHat (RHAT) from their initial public offering until early 2004. The datafile is a
comma-separated table and the first few records look like this:

Date,Open,High,Low,Close,Volume,Adj.Close*
12-Mar-04,17.74,18.49,17.67,18.02,4827500,18.02
11-Mar-04,17.60,18.90,17.37,18.09,7700400,18.09

Hence, we have a single header record and various prices in USD for each day of business. We will plot
the trend of the opening price as a red line superimposed on a yellow envelope representing the low-to-high
fluctuation during each day. We also indicate when and at what cost Paul Wessel bought a few shares,
and zoom in on the developments since 2003; in the inset we label the time-axis in Finnish in honor of
Linus Thorvalds. Because the time coordinates are Y2K-challenged and the order is backwards (big units
of years come after smaller units like days) we must change the default input/output formats used by .
Finally, we want to prefix prices with the $ symbol to indicate the currency. Here is how it all comes out:

#!/bin/csh
#
# GMT Example 21 $Id: job21.csh,v 1.13 2004/06/25 22:39:01 pwessel Exp $
#
# Purpose: Plot a time-series
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# GMT progs: gmtset, gmtconvert, minmax, psbasemap, psxy
# Unix progs: echo
#

# File has time stored as dd-Mon-yy so set input format to match it
# Make sure language is us since monthnames are in US english.

gmtset INPUT_DATE_FORMAT dd-o-yy PLOT_DATE_FORMAT o ANNOT_FONT_SIZE_PRIMARY +10p
gmtset TIME_FORMAT_PRIMARY abbreviated CHAR_ENCODING ISOLatin1+
gmtset TIME_LANGUAGE us

# Pull out a suitable region string in default yyyy-mm-dd format

set info = ‘minmax -f0T -I50 -C -H RHAT_price.csv‘
set R = "-R$info[1]/$info[2]/$info[3]/$info[4]"

# Lay down the basemap:

psbasemap $R -JX9iT/6i -Glightgreen -K -U"Example 21 in Cookbook" -Bs1Y/0WSen \
-Bpa3Of1o/50WSen:=\$::."RedHat (RHAT) Stock Price Trend since IPO": >! example_21.ps

# Plot main window with open price as red line over yellow envelope of low/highs
# use gmtconvert to stitch the envelope together (-I reverses outout) and
# set output date format to match the input date format.

gmtset OUTPUT_DATE_FORMAT dd-o-yy
gmtconvert -F0,2 -f0T -Hi RHAT_price.csv >! RHAT.env
gmtconvert -F0,3 -f0T -I -Hi RHAT_price.csv >> RHAT.env
psxy -R -J -Gyellow -O -K RHAT.env >> example_21.ps
psxy -R -J RHAT_price.csv -H -Wthin,red -O -K >> example_21.ps

# Draw P Wessel’s purchase price as line and label it. Note we temporary switch
# back to default yyyy-mm-dd format since that is what minmax gave us.

echo "05-May-00 0" >! RHAT.pw
echo "05-May-00 300" >> RHAT.pw
psxy -R -J RHAT.pw -Wthinner,- -O -K >> example_21.ps
echo "01-Jan-99 25" >! RHAT.pw
echo "01-Jan-05 25" >> RHAT.pw
psxy -R -J RHAT.pw -Wthick,- -O -K >> example_21.ps
gmtset INPUT_DATE_FORMAT yyyy-mm-dd
echo "$info[2] 25 12 0 17 RB Wessel purchase price" \

| pstext -R -J -O -K -D-0.1i/0.05i -N >> example_21.ps
gmtset INPUT_DATE_FORMAT dd-o-yy

# Get smaller region for insert for trend since 2003

set R = "-R2003T/$info[2]/$info[3]/30"

# Lay down the basemap, using Finnish annotations and place the insert in the upper right:

gmtset TIME_LANGUAGE fi
psbasemap $R -JX6iT/3i -Bpa1Of3o/10:=\$:ESw -Bs1Y/ -Glightblue -O -K -X3i -Y3i >> example_21.ps
gmtset TIME_LANGUAGE us

# Again, plot close price as red line over yellow envelope of low/highs

psxy -R -J -Gyellow -O -K RHAT.env >> example_21.ps
psxy -R -J RHAT_price.csv -H -Wthin/red -O -K >> example_21.ps

# Draw P Wessel’s purchase price as dashed line

psxy -R -J RHAT.pw -Wthick,- -O >> example_21.ps

# Clean up after ourselves:

\rm -f RHAT.* .gmtcommands4 .gmtdefaults4

which produces the plot in Figure 7.22, suggesting Wessel better hold on to those stocks for a while
longer...
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Figure 7.22: Time-series of RedHat stock price since IPO.

7.22 World-wide seismicity the last 7 days

The next example uses the command-line tool wget to obtain a data file from a specified URL4. In the
example script this line is commented out so the example will run even if you do not have wget (we use
the supplied neic quakes.d which normally would be created by wget ); remove the comment to get the
actual current seismicity plot using the live data. The main purpose of this script is not to show how to plot
a map background and a few circles, but rather demonstrate how a map legend may be composed using
the new tool pslegend. Some scripting is used to pull out information from the data file that is later used
in the legend. The legend will normally have the email address of the script owner; here that command is
commented out and the user is hardwired to “GMT guru”. The USGS logo, taken from their web page and
converted to a Sun rasterfile, is used to spice up the legend.

#!/bin/csh
#
# GMT Example 22 $Id: job22.csh,v 1.8 2004/09/29 05:29:16 pwessel Exp $
#
# Purpose: Automatic map of last 7 days of world-wide seismicity
# GMT progs: gmtset, pscoast, psxy, pslegend
# Unix progs: cat, sed, awk, wget|cur
#
gmtset ANNOT_FONT_SIZE_PRIMARY 10p HEADER_FONT_SIZE 18p PLOT_DEGREE_FORMAT ddd:mm:ssF

# Get the data (-q quietly) from USGS using the wget (comment out in case
# your system does not have wget or curl)

#wget http://neic.usgs.gov/neis/gis/bulletin.asc -q -O neic_quakes.d
#curl http://neic.usgs.gov/neis/gis/bulletin.asc -s >! neic_quakes.d

# Count the number of events (to be used in title later. one less due to header)

set n = ‘cat neic_quakes.d | wc -l‘
@ n--

# Pull out the first and last timestamp to use in legend title

4You can also use the utility curl
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set first = ‘sed -n 2p neic_quakes.d | awk -F, ’{printf "%s %s\n", $1, $2}’‘
set last = ‘sed -n ’$p’ neic_quakes.d | awk -F, ’{printf "%s %s\n", $1, $2}’‘

# Assign a string that contains the current user @ the current computer node.
# Note that two @@ is needed to print a single @ in pstext:

#set me = "$user@@‘hostname‘"
set me = "GMT guru @@ GMTbox"

# Create standard seismicity color table

cat << EOF >! neis.cpt
0 red 100 red
100 green 300 green
300 blue 10000 blue
EOF

# Start plotting. First lay down map, then plot quakes with size = magintude/50":

pscoast -Rg -JK180/9i -B45g30:."World-wide earthquake activity": -Gbrown -Slightblue \
-Dc -A1000 -K -U/-0.75i/-2.5i/"Example 22 in Cookbook" -Y2.75i >! example_22.ps

awk -F, ’{ print $4, $3, $6, $5*0.02}’ neic_quakes.d \
| psxy -R -JK -O -K -Cneis.cpt -Sci -Wthin -H >> example_22.ps

# Create legend input file for NEIS quake plot

cat << EOF >! neis.legend
H 16 1 $n events during $first to $last
D 0 1p
N 3
V 0 1p
S 0.1i c 0.1i red 0.25p 0.2i Shallow depth (0-100 km)
S 0.1i c 0.1i green 0.25p 0.2i Intermediate depth (100-300 km)
S 0.1i c 0.1i blue 0.25p 0.2i Very deep (> 300 km)
V 0 1p
D 0 1p
N 7
V 0 1p
S 0.1i c 0.06i - 0.25p 0.3i M 3
S 0.1i c 0.08i - 0.25p 0.3i M 4
S 0.1i c 0.10i - 0.25p 0.3i M 5
S 0.1i c 0.12i - 0.25p 0.3i M 6
S 0.1i c 0.14i - 0.25p 0.3i M 7
S 0.1i c 0.16i - 0.25p 0.3i M 8
S 0.1i c 0.18i - 0.25p 0.3i M 9
V 0 1p
D 0 1p
N 1
>
EOF

# Put together a reasonable legend text, and add logo and user’s name:

cat << EOF >> neis.legend
>
T USGS/NEIS most recent earthquakes for the last seven days. The data were
T obtained automatically from the USGS Earthquake Hazards Program page at
T @_http://neic/usgs.gov @_. Interested users may also receive email alerts
T from the USGS.
T This script can be called daily to update the latest information.
G 0.4i
# Add USGS logo
I USGS.ras 1i RT
G -0.3i
L 12 6 LB $me
EOF

# OK, now we can actually run pslegend. We center the legend below the map.
# Trial and error shows that 1.7i is a good legend height:

pslegend -Dx4.5i/-0.4i/7i/1.7i/TC -Jx1i -R0/8/0/8 -O -F neis.legend -Glightyellow >> example_22.ps

# Clean up after ourselves:

\rm -f neis.* .gmtcommands4 .gmtdefaults4

The script produces the plot in Figure 7.23, giving the URL where these and similar data can be ob-
tained.
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GMT guru @ GMTbox

Figure 7.23: World-wide seismicity the last 7 days.

7.23 All great-circle paths lead to Rome

While motorists recenty have started to question the old saying “all roads lead to Rome”, aircraft pilots
have known from the start that only one great-circle path connects the points of departure and arrival5.
This provides the inspiration for our next example which uses grdmath to calculate distances from Rome
to anywhere on Earth and grdcontour to contour these distances. We pick five cities that we connect to
Rome with great circle arcs, and label these cities with their names and distances (in km) from Rome, all
laid down on top of a beautiful world map. Note that we specify that contour labels only be placed along
the straight map-line connecting Rome to its antipode, and request curved labels that follows the shape of
the contours.

#!/bin/csh
#
# GMT Example 23 $Id: job23.csh,v 1.10 2004/07/13 18:47:09 pwessel Exp $
#
# Purpose: Plot distances from Rome and draw shortest paths
# GMT progs: gmtset, grdmath, grdcontour, psxy, pstext, grdtrack
# Unix progs: echo, cat, awk

# Position and name of central point:

set lon = 12.50
set lat = 41.99
set name = "Rome"

# Calculate distances (km) to all points on a global 1x1 grid

grdmath -Rg -I1 $lon $lat SDIST 111.13 MUL = dist.grd

# Location info for 5 other cities + label justification

cat << EOF >! cities.d
105.87 21.02 HANOI LM
282.95 -12.1 LIMA LM
178.42 -18.13 SUVA LM

5Pedants who wish to argue about the “other” arc going the long way should consider using it.
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237.67 47.58 SEATTLE RM
28.20 -25.75 PRETORIA LM
EOF

pscoast -Rg -JH90/9i -Glightgreen -Sblue -U"Example 23 in Cookbook" -A1000 \
-B0g30:."Distances from $name to the World": -K -Dc -Wthinnest >! example_23.ps

grdcontour dist.grd -A1000+v+ukm+kwhite -Glz-/z+ -S8 -C500 -O -K -J -Wathin,white \
-Wcthinnest,white,- >> example_23.ps

# Find the number of cities:

set n = ‘cat cities.d | wc -l‘

# For each of these cities, plot great circle arc with psxy

set i = 1
while ($i <= $n)

set record = ‘awk ’{ if (NR == ’$i’) print $0}’ cities.d‘
(echo $lon $lat; echo $record[1] $record[2]) | psxy -R -J -O -K -W2p/red >> example_23.ps
@ i++

end

# Plot red squares at cities and plot names:
psxy -R -J -O -K -Ss0.2 -Gred -W0.25p cities.d >> example_23.ps
awk ’{print $1, $2, 12, 1, 9, $4, $3}’ cities.d \

| pstext -R -J -O -K -Dj0.15/0 -Gred -N >> example_23.ps
# Place a yellow star at Rome
echo "$lon $lat" | psxy -R -J -O -K -Sa0.2i -Gyellow -Wthin >> example_23.ps

# Sample the distance grid at the cities and use the distance in km for labels

grdtrack -Gdist.grd cities.d \
| awk ’{printf "%s %s 12 0 1 CB %d\n", $1, $2, int($NF+0.5)}’ \
| pstext -R -J -O -D0/0.2i -N -Wwhiteo -C0.02i/0.02i >> example_23.ps

# Clean up after ourselves:

\rm -f cities.d dist.grd .gmt*
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Figure 7.24: All great-circle paths lead to Rome.

The script produces the plot in Figure 7.24; note how interesting the path to Seattle appears in this
particular projection (Hammer). We also note that Rome’s antipode lies somewhere near the Chatham
plateau (antipodes will be revisited in Example 25).
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7.24 Data selection based on geospatial criteria

Allthough we are not seismologists, we have yet another example involving seismicity. We use seismicity
data for the Australia/New Zealand region to demonstrate how we can extract subsets of data using geospa-
tial criteria. In particular, we wish to plot the epicenters given in the file oz quakes.d as red or green circles.
Green circles should only be used for epicenters that

1. Lie in the ocean and not on land

2. Are within 3000 km of Hobart

3. Are more than 1000 km away from the International Dateline

All remaining earthquakes should be plotted in red. Rather that doing the selection process twice we simply
plot all quakes as red circles and then replot those that pass our criteria. Most of the work here is done by
gmtselect; the rest is carried out by the usual pscoast and psxy workhorses. Note for our purposes the
Dateline is just a line along the 180

�

meridian.

#!/bin/csh
#
# GMT Example 24 $Id: job24.csh,v 1.4 2004/04/27 23:24:00 pwessel Exp $
#
# Purpose: Extract subsets of data based on geospatial criteria
# GMT progs: gmtselect, pscoast, psxy, minmax
# Unix progs: echo, cat, awk
#
# Highlight oceanic earthquakes within 3000 km of Hobart and > 1000 km from dateline
echo "147:13 -42:48 3000 Hobart" >! point.d
cat << EOF >! dateline.d
> Our proxy for the dateline
180 0
180 -90
EOF
set R = ‘minmax -I10 oz_quakes.d‘
pscoast $R -JM9i -K -Gtan -Sdarkblue -Wthin,white -Dl -A500 -Ba20f10g10WeSn \

-U"Example 24 in Cookbook" >! example_24.ps
psxy -R -J -O -K oz_quakes.d -Sc0.05i -Gred >> example_24.ps
gmtselect oz_quakes.d -L1000/dateline.d -Nk/s -C3000/point.d -fg -R -J -Il \

| psxy -R -JM -O -K -Sc0.05i -Ggreen >> example_24.ps
awk ’{print $1, $2, 0, $3, $3}’ point.d | psxy -R -J -O -K -SE -Wfat,white >> example_24.ps
awk ’{print $1, $2, 14, 0, 1, "LT", $4}’ point.d \

| pstext -R -J -O -K -Gwhite -D0.1i/-0.1i >> example_24.ps
psxy -R -J -O -K point.d -Wfat,white -Sx0.2i >> example_24.ps
psxy -R -J -O -M dateline.d -Wfat,white -A >> example_24.ps
\rm -f point.d dateline.d .gmt*

The script produces the plot in Figure 7.25. Note that the horizontal distance from the dateline seems to
increase as we go south; however that is just the projected distance (Mercator distortion) and not the actual
distance which remains constant at 1000 km.

7.25 Global distribution of antipodes

As promised in Example 23, we will study antipodes. The antipode of a point at
�
φ � λ � is the point at�

� φ � λ �
180 � . We seek an answer to the question that has plagued so many for so long: Given the distribu-

tion of land and ocean, how often is the antipode of a point on land also on land? And what about marine
antipodes? We use grdlandmask and grdmath to map these distributions and calculate the area of the
Earth (in percent) that goes with each of the three possibilities. To make sense of our grdmath equations
below, note that we first calculate a grid that is +1 when a point and its antipode is on land, -1 if both are in
the ocean, and 0 elsewhere. We then seek to calculate the area distribution of dry antipodes by only pulling
out the nodes that equal +1. As each point represent an area approximated by ∆φ � ∆λ where the ∆λ term’s
actual dimension depends on cos

�
φ � , we need to allow for that shrinkage, normalize our sum to that of the

whole area of the Earth, and finally convert that ratio to percent. Since the ∆λ, ∆φ terms appear twice in
these expressions they cancel out, leaving the somewhat intractable expressions below where the sum of
cos

�
φ � for all φ is known to equal 2Ny � π:



CHAPTER 7. COOK-BOOK 101

100˚ 120˚ 140˚ 160˚ 180˚ 200˚
-60˚

-40˚

-20˚

0˚

Hobart

Figure 7.25: Data selection based on geospatial criteria.

#!/bin/csh
#
# GMT Example 25 $Id: job25.csh,v 1.5 2004/07/01 17:57:13 pwessel Exp $
#
# Purpose: Display distribution of antipode types
# GMT progs: grdlandmask, grdmath, grd2xyz, gmtmath, grdimage, pscoast, pslegend
# Unix progs: cat
#
# Create D minutes global grid with -1 over oceans and +1 over land
set D = 30
grdlandmask -Rg -I${D}m -Dc -A500 -N-1/1/1/1/1 -F -Gwetdry.grd
# Manipulate so -1 means ocean/ocean antipode, +1 = land/land, and 0 elsewhere
grdmath wetdry.grd DUP 180 ROTX FLIPUD ADD 2 DIV = key.grd
# Calculate percentage area of each type of antipode match.
grdmath -Rg -I${D}m -F Y COSD 60 $D DIV 360 MUL DUP MUL PI DIV DIV 100 MUL = scale.grd
grdmath key.grd -1 EQ 0 NAN scale.grd MUL = tmp.grd
grd2xyz tmp.grd -S -ZTLf >! key.b
set ocean = ‘gmtmath -bi1s -Ca -S key.b SUM UPPER RINT =‘
grdmath key.grd 1 EQ 0 NAN scale.grd MUL = tmp.grd
grd2xyz tmp.grd -S -ZTLf >! key.b
set land = ‘gmtmath -bi1s -Ca -S key.b SUM UPPER RINT =‘
grdmath key.grd 0 EQ 0 NAN scale.grd MUL = tmp.grd
grd2xyz tmp.grd -S -ZTLf >! key.b
set mixed = ‘gmtmath -bi1s -Ca -S key.b SUM UPPER RINT =‘
# Generate corresponding color table
cat << EOF >! key.cpt
-1 blue 0 blue
0 gray 1 gray
1 red 2 red
EOF
# Create the final plot and overlay coastlines
gmtset ANNOT_FONT_SIZE_PRIMARY +10p PLOT_DEGREE_FORMAT dddF
grdimage key.grd -JKs180/9i -B60/30:."Antipodal comparisons":WsNE -K -Ckey.cpt -Y1.2i \

-U/-0.75i/-0.95i/"Example 25 in Cookbook" >! example_25.ps
pscoast -R -J -O -K -Wthinnest -Dc -A500 >> example_25.ps
# Place an explanatory legend below
pslegend -R0/9/0/0.5 -Jx1i/-1i -O -Dx4.5/0/6i/0.3i/TC -Y-0.2i -Fthick << EOF >> example_25.ps
N 3
S 0.15i s 0.2i red 0.25p 0.3i Terrestrial Antipodes [$land %]
S 0.15i s 0.2i blue 0.25p 0.3i Oceanic Antipodes [$ocean %]
S 0.15i s 0.2i gray 0.25p 0.3i Mixed Antipodes [$mixed %]
EOF
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\rm -f *.grd key.* .gmt*

In the end we obtain a funny-looking map depicting the antipodal distribution as well as displaying
in legend form the requested percentages (Figure 7.26). Note that the script is set to evaluate a global 30
minute grid for expediency (D � 30), hence several smaller landmasses that do have terrestrial antipodes
do not show up. If you want a more accurate map you can set the parameter D to a smaller increment (try
5 and wait a few minutes).

Antipodal comparisons
0˚ 60˚E 120˚E 180˚ 120˚W 60˚W 0˚
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60˚S 60˚S
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Terrestrial Antipodes [4 %] Oceanic Antipodes [46 %] Mixed Antipodes [50 %]

Figure 7.26: Global distribution of antipodes.
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A. GMT supplemental packages

These packages are for the most part written and supported by us, but there are some exceptions. They
provide extensions of that are needed for particular rather than general applications. The software
is provided in a separate, supplemental archive (GMT suppl.tar.gz (or .bz2); see Appendix D). Questions
or bug reports for this software should be addressed to the person(s) listed in the README file associated
with the particular program. It is not guaranteed that these programs are fully ANSI-C, Y2K, or POSIX
compliant, or that they necessarilly will install smoothly on all platforms, but most do. Note that the
data sets some of these programs work on are not distributed with these packages; they must be obtained
separately. The contents of the supplemental archive may change without notice; at this writing it contains
these directories:

A.1 dbase: gridded data extractor

This package contains grdraster which you can use to extract data from global gridded data sets such as
those available from NGDC. We have used it to prepare some of the grids in the examples (Chapter 6). You
can also customize it to read your own data sets. The package is maintained by the developers.

A.2 gshhs: GSHHS data extractor

This package contains gshhs which you can use to extract shoreline polygons from the Global Self-
consistent Hierarchical High-resolution Shorelines (GSHHS) available separately from NGDC1 or the
GSHHS home page2 (GSHHS is the polygon data base from which the coastlines derive). It also
contains gshhs dp for cleverly decimating a shoreline, and gshhstograss to convert shoreline segments to
the GRASS database format; the latter program is maintained by Simon Cox3. The package is maintained
by Paul Wessel.

A.3 imgsrc: gridded altimetry extractor

This package consists of the program img2mercgrd to extract subsets of the global gravity and predicted
topography solutions derived from satellite altimetry4. The package is maintained by Walter Smith5.

A.4 meca: seismology and geodesy symbols

This package contains the programs pscoupe, psmeca, pspolar, and psvelo which are used by seis-
mologists and geodesists for plotting focal mechanisms (including cross-sections and polarities), error
ellipses, velocity arrows, rotational wedges, and more. The package is maintained by Kurt Feigl6 and
Genevieve Patau7.

A.5 mex: Matlab–GMT interface

Here you will find the mex files grdinfo, grdread , and grdwrite, which can be used in Matlab to read and
write grdfiles. The package originated with David Sandwell, UCSD, and was subsequently modified

1http://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html
2http://www.soest.hawaii.edu/wessel/gshhs/gshhs.html
3Simon.Cox@csiro.au
4For data bases, see http://topex.ucsd.edu/marine grav/mar grav.html.
5walter@raptor.grdl.noaa.gov
6Kurt.Feigl@cnes.fr
7patau@ipgp.jussieu.fr
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by Paul Wessel and Phil Sharfstein, UCSB. It is now maintained by Paul Wessel.

A.6 mgd77: MGD77 extractor and plotting tools

This package currently holds the programs mgd77info, mgd77list, mgd77path, and mgd77track
which can be used to extract information or data values from or plot marine geophysical data files in
the MGD-77 format8). We expect this package eventually to replace the mgg package. The package is
maintained by Paul Wessel.

A.7 mgg: GMT-MGD77 extractor and plotting tools

This package holds the programs binlegs, dat2gmt, gmt2dat, gmtinfo, gmtlegs, gmtlist, gmtpath,
gmttrack, and mgd77togmt, which can be used to maintain, access, extract data from, and plot marine
geophysical data files converted from the MGD-77 format to the .gmt format9). The package is maintained
by the developers.

A.8 misc: posters, patterns, and digitizing

At the moment, this package contains the programs psmegaplot which you can use to make large posters
using a simple laserwriter, makepattern which generates raster patterns from 3.0 icon files, and
gmtdigitize which provides a GMT interface to a digitizing tablet via a serial port. The package is
maintained by Paul Wessel.

A.9 segyprogs: Plotting SEGY seismic data

This package contains programs to plot SEGY seismic data files using the mapping transformations
and postscript library. pssegy generates a 2-D plot (x:location and y:time/depth) while pssegyz gener-
ates a 3-D plot (x and y: location coordinates, z: time/depth). Locations may be read from predefined or
arbitrary portions of each trace header. The package is maintained by Tim Henstock10.

A.10 spotter: backtracking and hotspotting

This package contains the plate tectonic programs backtracker, which you can use to move geologic
markers forward or backward in time, hotspotter which generates CVA grids based on seamount locations
and a set of absolute plate motion stage poles, originator, which associates seamounts with the most likely
hotspot origins, and rotconverter which does various operations involving finite rotations on a sphere.
The package is maintained by Paul Wessel.

A.11 x2sys: Track crossover error estimation

This package contains the tools x2sys datalist, which allows you to extract data from almost any binary
or ASCII data file, and x2sys cross which determines crossover locations and errors generated by one or
several geospatial tracks. Newly added are the tools x2sys binlist, x2sys put, and x2sys get which
extends the track-management system employed by the mgg supplement to generic track data of any format.
This package represents a new generation of tools intended to replace the old “X SYSTEM” crossover tools
(below). The package is maintained by Paul Wessel.

8These data are available on CD-ROM from NGDC (www.ngdc.noaa.gov).
9These data are available on CD-ROM from NGDC (www.ngdc.noaa.gov).

10Timothy.J.Henstock@soc.soton.ac.uk
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A.12 x system: Track crossover error estimation

This package contains the tools x edit, x init, x list, x over, x remove, x report, x setup, x solve dc drift,
and x update. Collectively, they make up the old “XSYSTEM” crossover tools. This package with remain
in the supplemental archive until x2sys is complete. The package is maintained by Paul Wessel.

A.13 xgrid: visual editor for grdfiles

The package contains an X11 editor (xgridedit ) for visual editing of grdfiles. It was originally developed
by Hugh Fisher, CRES, in March 1992 but is now maintained by Lloyd Parkes11.

11lloyd@must-have-coffee.gen.nz
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B. GMT file formats

B.1 Table data

These files have N records which have M fields each. Most programs can read multicolumn files, but require
that the x [and y] variable(s) be stored in the 1st [and 2nd] column (There are, however, some exceptions to
this rule, such as filter1d and sample1d). can read both ASCII and binary table data.

B.1.1 ASCII tables

Optional file header records

The first data record may be preceded by 1 or more header records. When using such files, make sure to
use the –H option and set the parameter N HEADER RECS in the .gmtdefaults4 file (System default is 1
header record if –H is set; you may also use –Hnrecs directly). Fields within a record must be separated
by spaces, tabs, or commas. Each field can be an integer or floating-point number or a geographic coordi-
nate string using the [+ � -]dd[:mm[:ss]][W � S � N � E � w � s � n � e] format. Thus, 12:30:44.5W, 17.5S, 1:00:05, and
200:45E are all valid input strings.

Optional segment header records

When dealing with time- or (x,y)-series it is usually convenient to have each profile in separate files. How-
ever, this may sometimes prove impractical due to large numbers of profiles. An example is files of digi-
tized lineations where the number of individual features may range into the thousands. One file per feature
would in this case be unreasonable and furthermore clog up the directory. provides a mechanism
for keeping more than one profile in a file. Such files are called multiple segment files and are identical
to the ones just outlined except that they have subheaders interspersed with data records that signal the
start of a segment. The subheaders may be of any format, but all must have the same character in the
first column. When using such files, you must specify the –M option. The unique character is by default
’ � ’, but you can override that by appending your chosen character to the M option. E.g., –MH will look
for subheaders starting with H, whereas –M’*’ will check for asterisks (The quotes are necessary since *
has special meaning to UNIX). Some programs such as psxy will examine the subheaders to see if they
contain –W and –G options for specifying pen and fill attributes for individual segments, –Z to change
color via a cpt-file, or –L for label specifications. These settings (and occasionally others) will override the
corresponding command line options.

B.1.2 Binary tables

programs also support binary tables to speed up input-output for i/o-intensive tasks like gridding and
preprocessing. Files may have no header (hence the –H option cannot be used) and all data must either be
single or double precision (no mixing allowed). Multiple segment files are allowed (–M) and the segment
headers are assumed to be records where all the fields equal NaN. Flags appended to –M are ignored. The
format and number of fields are specified with the –b option. Thus, for input you may set –bi[s][n], where
s designates single precision (default is double) and n is the number of fields. For output, use –bo[s] (the
programs know how many columns to write, unless you use –M in which case we need to know the number
of output columns up front).

B.2 2-D grdfiles

B.2.1 File contents

The default 2-D binary netCDF grdfile in has several attributes. The grdedit utility program will
allow you to edit parts of the header of an existing grdfile. The attributes listed in Table B.1 are contained
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Parameter Description
int nx Number of nodes in the x-dimension
int ny Number of nodes in the y-dimension
int node offset 0 for grid line registration, 1 for pixel registration
double x min Minimum x-value of region
double x max Maximum x-value of region
double y min Minimum y-value of region
double y max Maximum y-value of region
double z min Minimum z-value in data set
double z max Maximum z-value in data set
double x inc Node spacing in x-dimension
double y inc Node spacing in y-dimension
double z scale factor Factor to multiply z-values after read
double z add offset Offset to add to scaled z-values
char x units[80] Units of the x-dimension
char y units[80] Units of the y-dimension
char z units[80] Units of the z-dimension
char title[80] Descriptive title of the data set
char command[320] Command line that produced the grdfile
char remark[160] Any additional comments

float z[nx*ny] 1-D array with z-values in scanline format

Table B.1: GMT gridded file header record.

within the header record in the order given (except the z-array which is not part of the header structure, but
makes up the rest of the file).

also allows other formats to be read. In addition to the default netCDF format it can use binary
floating points, short integers, bytes, and bits, as well as 8-bit Sun rasterfiles (colormap ignored). Additional
formats may be used by supplying read/write functions and linking these with the libraries. The
source file gmt customio.c has the information that programmers will need to augment to read custom
grdfiles. We anticipate that the number of pre-programmed formats will increase as enterprising users
implement what they need.

B.2.2 Grid line and Pixel registration

Scanline format means that the data are stored in rows (y = constant) going from the “top” (y � ymax

(north)) to the “bottom” (y � ymin (south)). Data within each row are ordered from “left” (x � xmin

(west)) to “right” (x � xmax (east)). The node offset signals how the nodes are laid out. The grid is
always defined as the intersections of all x ( x � xmin � xmin

�
xinc � xmin

�
2 � xinc �

� � �
� xmax ) and y ( y �

ymin � ymin
�

yinc � ymin
�

2 � yinc �
� � �

� ymax ) lines. The two scenarios differ in which area each data point rep-
resents. The default registration in is grid line registration. Most programs can handle both types,
and for some programs like grdimage a pixel registered file makes more sense. Utility programs like
grdsample and grdproject will allow you to convert from one format to the other.

Grid line registration

In this registration, the nodes are centered on the grid line intersections and the data points represent the
average value in a cell of dimensions (xinc

� yinc) centered on the nodes (Figure B.1). In the case of grid line
registration the number of nodes are related to region and grid spacing by

nx � �
xmax � xmin � � xinc

�
1

ny � �
ymax � ymin � � yinc

�
1
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which for the example in Figure B.1 yields nx � ny � 4.

Figure B.1: Grid line registration of data nodes.

Pixel registration

Here, the nodes are centered in the grid cells, i.e., the areas between grid lines, and the data points represent
the average values within each cell (Figure B.2. In the case of pixel registration the number of nodes are
related to region and grid spacing by

nx � �
xmax � xmin � � xinc

ny � �
ymax � ymin � � yinc

Thus, given the same region (–R), the pixel registered grids have one less column and one less row than
the grid line registered grids; here we find nx � ny � 3.

Figure B.2: Pixel registration of data nodes.

B.2.3 Boundary Conditions for operations on grids

has the option to specify boundary conditions in some programs that operate on grids (grdsample
–L; grdgradient –L; grdtrack –L; nearneighbor –L; grdview –L). The boundary conditions come
into play when interpolating or computing derivatives near the limits of the region covered by the grid. The
default boundary conditions used are those which are “natural” for the boundary of a minimum curvature
interpolating surface. If the user knows that the data are periodic in x (and/or y), or that the data cover a
sphere with x,y representing longitude,latitude, then there are better choices for the boundary conditions.
Periodic conditions on x (and/or y) are chosen by specifying x (and/or y) as the boundary condition flags;
global spherical cases are specified using the g (geographical) flag. Behavior of these conditions is as
follows:

Periodic conditions on x indicate that the data are periodic in the distance (xmax � xmin) and thus repeat
values after every N � �

xmax � xmin � � xinc. Note that this implies that in a grid-registered file the
values in the first and last columns are equal, since these are located at x � xmin and x � xmax, and
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there are N + 1 columns in the file. This is not the case in a pixel-registered file, where there are only
N and the first and last columns are located at xmin

�
xinc � 2 and xmax � xinc � 2. If y is periodic all the

same holds for y.

Geographical conditions indicate the following:

1. If
�
xmax � xmin � �

360 and also 180 modulo xinc � 0 then a periodic condition is used on x with
a period of 360; else a default condition is used on the x boundaries.

2. If condition 1 is true and also ymax � 90 then a “north pole condition” is used at ymax, else a
default condition is used there.

3. If condition 1 is true and also ymin � � 90 then a “south pole condition” is used at ymin, else a
default condition is used there.

“Pole conditions” use a 180
�

phase-shift of the data, requiring 180 modulo xinc � 0.

Default boundary conditions are

∇2 f � ∂
∂n

∇2 f � 0

on the boundary, where f
�
x � y � is represented by the values in the grid file, and ∂ � ∂n is the derivative

in the direction normal to a boundary, and

∇2 �
�

∂2

∂x2
� ∂2

∂y2 �
is the two-dimensional Laplacian operator.

B.3 Sun raster files

The Sun raster file format consists of a header followed by a series of unsigned 1-byte integers that repre-
sents the bit-pattern. Bits are scanline oriented, and each row must contain an even number of bytes. The
predefined 1-bit patterns in have dimensions of 64 by 64, but other sizes will be accepted when using
the –Gp � P option. The Sun header structure is outline in Table B.2.

Parameter Description
int ras magic Magic number
int ras width Width (pixels) of image
int ras height Height (pixels) of image
int ras depth Depth (1, 8, 24, 32 bits) of pixel
int ras length Length (bytes) of image
int ras type Type of file; see RT * below
int ras maptype Type of colormap; see RMT * below
int ras maplength Length (bytes) of following map

Table B.2: Structure of a Sun rasterfile.

After the header, the color map (if ras maptype is not RMT NONE) follows for ras maplength bytes,
followed by an image of ras length bytes. Some related definitions are given in Table B.3.
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Macro name Description
RAS MAGIC 0x59a66a95
RT STANDARD 1 (Raw pixrect image in 68000 byte order)
RT BYTE ENCODED 2 (Run-length compression of bytes)
RT FORMAT RGB 3 ([X]RGB instead of [X]BGR)
RMT NONE 0 (ras maplength is expected to be 0)
RMT EQUAL RGB 1 (red[ras maplength/3],green[],blue[])

Table B.3: Sun macro definitions relevant to rasterfiles.

Numerous public-domain programs exist, such as xv and convert (in the ImageMagick package), that
will translate between various rasterfile formats such as tiff, gif, jpeg, and Sun raster. Raster patterns may
be created with plotting tools by generating PostScript plots that can be rasterized by ghostscript
and translated into the right raster format.
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C. Making GMT Encapsulated PostScript Files

can produce both freeform PostScript files and the more restricted Encapsulated PostScript files
(EPS). The former is intended to be sent to a printer or PostScript previewer, while the latter is indended
to be included in another document (but should also be able to print and preview). You control what kind
of PostScript that produces by manipulating the PAPER MEDIA parameter (see the gmtdefaults
man page for how this is accomplished). Note that a freeform PostScript file may contain special operators
(such as Setpagedevice) that is specific to printers (e.g., selection of paper tray). Some previewers
(among them, Sun’s pageview) do not understand these valid instructions and may fail to image the file. If
this is your situation you should choose another viewer (we recommend ghostview) or select EPS output
instead.

However, there is much confusion over what an EPS file is and if other programs can read it. Much
of this has to do with the claim by some software manufacturers that their programs can read and edit
EPS files. We used to get much mail from people asking us to let produce EPS files that can be
read, e.g., by Adobe Illustrator. This was a limitation of early versions of Adobe Illustrator and similar
programs, not ! Since then, Adobe Illustrator and other programs have improved their abilities to
parse freeform PostScript such as that produced by , but problems seem to occasionally reappear.

An EPS file that is to be placed into another application (such as a text document) need to have correct
bounding-box parameters. These are found in the PostScript Document Comment %%BoundingBox. Ap-
plications that generate EPS files should set these parameters correctly. Because makes the PostScript
files on the fly, often with several overlays, it is not possible to do so accurately. However, does make
an effort to ensure that the boundingbox is large enough to contain the entire composite plot1. Therefore,
if you need a “tight” boundingbox you need to post-process your PostScript file. There are several ways in
which this can be accomplished.

� Programs such as Adobe Illustrator, Aldus Freehand , and Corel Draw will allow you to edit the
boundingbox graphically.

� A command-line alternative is to use freely-available program epstool from the makers of Aladdin
ghostscript . Running

epstool -c -b yourplot.ps

should give a tight BoundingBox; epstool assumes the plot is page size and not a huge poster.

� Another option is to use ps2epsi which also comes with the ghostscript package. Running

ps2epsi myplot.ps myplot.eps

should also do the trick.

If you do not want to modify the illustration but just include it in a text document: Many word pro-
cessors (such as Microsoft Word and Corel WordPerfect ) will let you include a PostScript file that you
may place but not edit. You will not be able to view the figure on-screen, but it will print correctly. All
illustrations in this documentation were -produced PostScript files that were converted to EPS
files using ps2epsi and then included into a LATEX document.

These examples do not constitute endorsements of the products mentioned above; they only represent
our limited experience with the problem. For other solutions and further help, please post messages to
gmt-help@hawaii.edu.

1In contrast, regular PostScript files simply have a %%BoundingBox that equal the size of the chosen paper.
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D. Availability of GMT and related code

All the source code, support data, PostScript and HTML versions of all documentation, and UNIX (includ-
ing HTML) manual pages can be obtained by anonymous ftp from several mirror sites. We also maintain a

page on the World Wide Web (http://gmt.soest.hawaii.edu); See this page for installation directions
which allow for a simplified, automatic install procedure (for a CD-R solution, see http://www.geoware-
online.com.)

The tar archives are available both in gzip and bzip2 format. If neither of these utilities are
installed on your system, you should know that the former program is available from GNU1 while the latter
can be obtained from Redat2. bzip2 compresses much better than gzip: for example, the full resolution
coastline database is only � 29 Mb in bzip2 format compared to a hefty � 44 Mb in gzip. These files have
the .bz2 suffix.

The GMT archives are as follows:

GMT progs.tar. � gz,bz2 � Contains all source code, cpt files, and PostScript patterns.

GMT share.tar. � gz,bz2 � Contains the intermediate, low, and crude resolutions of the coastline database.
Required with progs.tar for minimal setup needed to run .

GMT doc.tar. � gz,bz2 � Contains all documentation (man pages, PostScript versions of both the
Cookbook and Technical Reference and the tutorial, and the short course material).

GMT web.tar. � gz,bz2 � Contains all HTML versions of all documentation (man pages, Cookbook
and Technical Reference, and tutorial).

GMT full.tar. � gz,bz2 � Contains the optional full-resolution coastline database.

GMT high.tar. � gz,bz2 � Contains the optional high-resolution coastline database.

GMT scripts.tar. � gz,bz2 � Contains all the shellscripts and support data used in the Cookbook section.

GMT suppl.tar. � gz,bz2 � Contains several programs written by us and users elsewhere. (See Ap-
pendix A for more details).

triangle.tar. � gz,bz2 � Contains John Shewchuk’s fast Delaunay triangulation routine which may be in-
stalled with GMT. (See the copyright information first if you are a commercial user).

All of the above archives are also available as Windows ZIP archives, e.g., GMT progs.zip. For
Windows users who do not want to compile themselves, there are two zip files with Win32 executables:

GMT exe.zip ZIP archive with all main executables.

GMT suppl exe.zip ZIP archive with all supplemental executables.

The netCDF library that makes up the backbone of the grdfile I/O operations can be obtained from
Unidata. A compressed tar file can be accessed (in binary mode) from the file netcdf.tar.Z in the anonymous
FTP directory of unidata.ucar.edu. The software distribution includes a PostScript file of the netCDF
User’s Guide, and there is also online documentation from their web site. [netcdfgroup@unidata.ucar.edu
is available for discussion of the netCDF interface and announcements about netCDF bugs, fixes, and
enhancements. To subscribe, send a request to netcdfgroup-adm@unidata.ucar.edu]. Precompiled libraries
for WIN32 are also available3.

1www.gnu.org
2http://sources.redhat.com/bzip2/index.html
3Required with GMT exe.zip
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E. Predefined bit and hachure patterns in GMT

provides 90 different bit and hachure patterns that can be selected with the –Gp option in most
plotting programs. These patterns are reproduced below at 300 dpi.

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

37 38 39 40 41 42

43 44 45 46 47 48

49 50 51 52 53 54

55 56 57 58 59 60

61 62 63 64 65 66

67 68 69 70 71 72

73 74 75 76 77 78

79 80 81 82 83 84

85 86 87 88 89 90
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F. Chart of octal codes for characters

octal 0 1 2 3 4 5 6 7

\03x ¾ ³ ™ ² ý ÿ ž

\04x  ! " # $ % & ’

\05x ( ) * + , - . /

\06x 0 1 2 3 4 5 6 7

\07x 8 9 : ; < = > ?

\10x @ A B C D E F G

\11x H I J K L M N O

\12x P Q R S T U V W

\13x X Y Z [ \ ] ^ _

\14x ‘ a b c d e f g

\15x h i j k l m n o

\16x p q r s t u v w

\17x x y z { | } ~ ƒ

\20x Ã Ç Ð Ł Ñ Õ Š Þ

\21x Ý Ÿ Ž ã ¦ ç © °

\22x ÷ ð ¬ ł − µ × ñ

\23x ½ ¼ ¹ õ ± ® š þ

\24x ¡ ¢ £ ⁄ ¥ ƒ §

\25x ¤ ' “ « ‹ › fi fl

\26x Á – † ‡ · Â ¶ •

\27x ‚ „ ” » … ‰ Ä ¿

\30x À ` ´ ˆ ˜ ¯ ˘ ˙

\31x ¨ É ˚ ¸ Ê ˝ ˛ ˇ

\32x — Ë È Í Î Ï Ì Ó
\33x Ô Ö Ò Ú Û Ü Ù á

\34x â Æ ä ª à é ê ë

\35x è Ø Œ º í î ï ì

\36x ó æ ô ö ò ı ú û

\37x ü ø œ ß ù Å å ÿ

Figure F.1: Octal codes and corresponding symbols for StandardEncoding fonts.

The characters and their octal codes in the Standard encoded fonts are shown in Figure F.1, while the
characters and their octal codes in the ISOLatin1 encoded fonts are shown in Figure F.2. Dark gray areas
signify codes reserved for control characters. In order to use all the extended characters (shown in the light
gray boxes) you need to set CHAR ENCODING to Standard+ or ISOLatin1+ in your .gmtdefaults4 file1.
The chart for the Symbol ( font number 12) character sets are presented in Figure F.3 below. The octal
code is obtained by appending the column value to the � ?? value, e.g., ∂ is � 266 in the Symbol font. The
euro currency symbol is � 240 in the Symbol font and will print if your printer supports it (older printer’s

1If you chose SI units during the installation then the default encoding is ISOLatin1+, otherwise it is Standard+.
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firmware will not know about the euro).

octal 0 1 2 3 4 5 6 7

\03x • … ™ — – fi ž

\04x  ! " # $ % & ’

\05x ( ) * + , − . /

\06x 0 1 2 3 4 5 6 7

\07x 8 9 : ; < = > ?

\10x @ A B C D E F G

\11x H I J K L M N O

\12x P Q R S T U V W

\13x X Y Z [ \ ] ^ _

\14x ‘ a b c d e f g

\15x h i j k l m n o

\16x p q r s t u v w

\17x x y z { | } ~ š

\20x Œ † ‡ Ł ⁄ ‹ Š ›

\21x œ Ÿ Ž ł ‰ „ “ ”

\22x ı ` ´ ˆ ˜ ¯ ˘ ˙

\23x ¨ ‚ ˚ ¸ ' ˝ ˛ ˇ

\24x ¡ ¢ £ ¤ ¥ ¦ §

\25x ¨ © ª « ¬ - ® ¯

\26x ° ± ² ³ ´ µ ¶ ·

\27x ¸ ¹ º » ¼ ½ ¾ ¿

\30x À Á Â Ã Ä Å Æ Ç
\31x È É Ê Ë Ì Í Î Ï

\32x Ð Ñ Ò Ó Ô Õ Ö ×

\33x Ø Ù Ú Û Ü Ý Þ ß

\34x à á â ã ä å æ ç

\35x è é ê ë ì í î ï

\36x ð ñ ò ó ô
� � �

\37x ø � � � � � � 	

Figure F.2: Octal codes and corresponding symbols for ISOLatin1Encoding fonts.

The Pifont ZapfDingbats is available as font number 34 and can be used for special symbols not
listed above. The various symbols are illustrated in Figure F.4.
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octal 0 1 2 3 4 5 6 7

\04x  ! ∀ # ∃ % & ∋
\05x ( ) ∗ + , − . /
\06x 0 1 2 3 4 5 6 7
\07x 8 9 : ; < = > ?
\10x ≅ Α Β Χ ∆ Ε Φ Γ
\11x Η Ι ϑ Κ Λ Μ Ν Ο
\12x Π Θ Ρ Σ Τ Υ ς Ω
\13x Ξ Ψ Ζ [ ∴ ] ⊥ _

\14x  α β χ δ ε φ γ
\15x η ι ϕ κ λ µ ν ο
\16x π θ ρ σ τ υ ϖ ω
\17x ξ ψ ζ { | } ∼

\24x € ϒ ′ ≤ ⁄ ∞ ƒ ♣
\25x ♦ ♥ ♠ ↔ ← ↑ → ↓
\26x ° ± ″ ≥ × ∝ ∂ •

\27x ÷ ≠ ≡ ≈ …   ↵
\30x ℵ ℑ ℜ ℘ ⊗ ⊕ ∅ ∩
\31x ∪ ⊃ ⊇ ⊄ ⊂ ⊆ ∈ ∉
\32x ∠ ∇    ∏ √ ⋅

\33x ¬ ∧ ∨ ⇔ ⇐ ⇑ ⇒ ⇓
\34x ◊ 〈    ∑  
\35x        
\36x ð 〉 ∫ ⌠  ⌡  
\37x       

Figure F.3: Octal codes and corresponding symbols for the Symbol font.
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octal 0 1 2 3 4 5 6 7

\04x  ✁ ✂ ✃ ✄ ☎ ✆ ✇

\05x ✈ ✉ ☛ ☞ ✌ ✍ ✎ ✏

\06x ✐ ✑ ✒ ✓ ✔ ✕ ✖ ✗

\07x ✘ ✙ ✚ ✛ ✜ ✝ ✞ ✟

\10x ✠ ✡ ✢ ✣ ✤ ✥ ✦ ✧

\11x ★ ✩ ✪ ✫ ✬ ✭ ✮ ✯

\12x ✰ ✱ ✲ ✳ ✴ ✵ ✶ ✷

\13x ✸ ✹ ✺ ✻ ✼ ✽ ✾ ✿

\14x ❀ ❁ ❂ ❃ ❄ ❅ ❆ ❇

\15x ❈ ❉ ❊ ❋ ● ❍ ■ ❏

\16x ❐ ❑ ❒ ▲ ▼ ◆ ❖ ◗

\17x ❘ ❙ ❚ ❛ ❜ ❝ ❞

\24x ❡ ❢ ❣ ❤ ❥ ❦ ❧

\25x ♣ ♦ ♥ ♠ ① ② ③ ④

\26x ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ ❶ ❷

\27x ❸ ❹ ❺ ❻ ❼ ❽ ❾ ❿

\30x ➀ ➁ ➂ ➃ ➄ ➅ ➆ ➇

\31x ➈ ➉ ➊ ➋ ➌ ➍ ➎ ➏

\32x ➐ ➑ ➒ ➓ ➔ → ↔ ↕

\33x ➘ ➙ ➚ ➛ ➜ ➝ ➞ ➟

\34x ➠ ➡ ➢ ➣ ➤ ➥ ➦ ➧

\35x ➨ ➩ ➪ ➫ ➬ ➭ ➮ ➯

\36x ð ➱ ➲ ➳ ➴ ➵ ➶ ➷

\37x ➸ ➹ ➺ ➻ ➼ ➽ ➾

Figure F.4: Octal codes and corresponding symbols for ZapfDingbats font.
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G. PostScript fonts used by GMT

uses the standard 35 fonts that come with most PostScript laserwriters, as well as 4 Japanese fonts,
for a total of 39. If your printer does not support some of these fonts, it will automatically substitute the
default font (which is usually Courier). The following is a list of the fonts:

# Font Name # Font Name

0 Helvetica 17 Bookman−Demi

1 Helvetica−Bold 18 Bookman−DemiItalic

2 Helvetica−Oblique 19 Bookman−Light

3 Helvetica−BoldOblique 20 Bookman−LightItalic

4 Times−Roman 21 Helvetica−Narrow

5 Times−Bold 22 Helvetica−Narrow−Bold
6 Times−Italic 23 Helvetica−Narrow−Oblique

7 Times−BoldItalic 24 Helvetica−Narrow−BoldOblique
8 Courier 25 NewCenturySchlbk−Roman
9 Courier−Bold 26 NewCenturySchlbk−Italic

10 Courier−Oblique 27 NewCenturySchlbk−Bold
11 Courier−BoldOblique 28 NewCenturySchlbk−BoldItalic
12 Σψµβολ (Symbol) 29 Palatino−Roman

13 AvantGarde−Book 30 Palatino−Italic

14 AvantGarde−BookOblique 31 Palatino−Bold

15 AvantGarde−Demi 32 Palatino−BoldItalic

16 AvantGarde−DemiOblique 33 ZapfChancery−MediumItalic

34 ✺❁❐❆✤❉■❇❂❁▼▲ (ZapfDingbats)

Figure G.1: The standard 35 PostScript fonts recognized by GMT.

For the special fonts Symbol (12) and ZapfDingbats (34), see the octal charts in Appendix F. When
specifying fonts in , you can either give the entire font name or just the font number listed in this
table. To change the fonts used in plotting basemap frames, see the man page for gmtdefaults. For
direct plotting of text-strings, see the man page for pstext. To add additional fonts that you may have
purchased or that are available at your institution, see instructions in the CUSTOM font info.d under the
share directory.
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H. Problems with display of GMT PostScript

creates valid (so far as we know) Adobe PostScript Level 1. It does not use operators specific to Level
2 and should therefore produce output that will print on old as well as new PostScript printers1. Sometimes
unexpected things happen when output is sent to certain printers or displays. This section lists some
things we have learned from experience, and some work-arounds. Note that many of these lessons are now
rather old so hopefully these workarounds no longer apply to anybody...

H.1 PostScript driver bugs

When you try to display a PostScript file on a device, such as a printer or your screen, then a program called
a PostScript device driver has to compute which device pixels should receive which colors (black or white
in the case of a simple laser printer) in order to display the file. At this stage, certain device-dependent
things may happen. These are not limitations of or PostScript, but of the particular display device.
The following bugs are known to us based on our experiences:

1. Early versions of the Sun SPARCprinter software caused linewidth-dependent path displacement.
We reported this bug and it has been fixed in newer versions of the software. Try using psxy to draw
y � f

�
x � twice, once with a thin pen (–W1) and once with a fat pen (–W10); if they do not plot on

top of each other, you have this kind of bug and need new software. The problem may also show up
when you plot a mixture of solid and dashed (or dotted) lines of various pen thickness

2. The first version of the HP Laserjet 4M (prior to Aug–93) had bugs in the driver program. The old
one was PostScript SIMM, part number C2080-60001; the new one is called PostScript SIMM, part
number C2080-60002. You need to get this one plugged into your printer if you have an HP LaserJet
4M.

3. Apple Laserwriters with the older versions of Apple’s PostScript driver will give the error “lim-
itcheck” and fail to plot when they encounter a path exceeding about 1000–1500 points. Try to get a
newer driver from Apple, but if you can’t do that, set the parameter MAX L1 PATH to 1000–1500
or even smaller in the file src/pslib inc.h and recompile . The number of points in a PostScript
path can be arbitrarily large, in principle; will only create paths longer than MAX L1 PATH
if the path represents a filled polygon or clipping path. Line-drawings (no fill) will be split so that
no segment exceeds MAX L1 PATH. This means psxy –G will issue a warning when you plot a
polygon with more than MAX L1 PATH points in it. It is then your responsibility to split the large
polygon into several smaller segments. If pscoast gives such warnings and the file fails to plot you
may have to select one of the lower resolution databases The path limitation exemplified by these
Apple printers is what makes the higher-resolution coastlines for pscoast non-trivial: such coast-
lines have to be organized so that fill operations do not generate excessively large paths. Some HP
PostScript cartridges for the Laserjet III also have trouble with paths exceeding 1500 points; they
may successfully print the file, but it can take all night!

4. 8-bit color screen displays (and programs which use only 8-bits, even on 24-bit monitors, such as
Sun’s pageview under OpenWindows) may not dither cleverly, and so the color they show you may
not resemble the color your PostScript file is asking for. Therefore, if you choose colors you like on
the screen, you may be surprised to find that your plot looks different on the hardcopy printer or film
writer. The only thing you can do is be aware of this, and make some test cases on your hardcopy
devices and compare them with the screen, until you get used to this effect. (Each hardcopy device
is also a little different, and so you will eventually find that you want to tune your color choices for
each device.) The rgb color cube in example 11 may help.

1Note, however, that the –Q option in grdimage will exercise a PostScript Level 3 feature called colormasking.
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5. Some versions of Sun’s OpenWindows program pageview have only a limited number of colors
available; the number can be increased somewhat by starting openwin with the option “openwin
-cubesize large”.

6. Finally, pageview seem to have problems understanding the setpagedevice operator. We rec-
ommend you only use pageview on EPS files or use ghostview instead.

7. Many color hardcopy devices use CMYK color systems. PostScript uses RGB (even if your
cpt files are using HSV). The three coordinates of RGB space can be mapped into three coordinates
in CMY space, and in theory K (black) is superfluous. But it is hard to get CMY inks to mix into a
good black or gray, so these printers supply a black ink as well, hence CMYK. The PostScript driver
for a CMYK printer should be smart enough to compute what portion of CMY can be drawn in K,
and use K for this and remove it from CMY; however, some of them aren’t.

8. In early releases of we always used the PostScript command r g b setrgbcolor to spec-
ify colors, even if the color happened to be a shade of gray (r � g � b) or black (r � g � b � 0).
One of our users found that black came out muddy brown when he used FreedomOfPress to make a
Versatec plot of a map. He found that if he used the PostScript command g setgray (where
g is a graylevel) then the problem went away. Apparently, his installation of FreedomOfPress uses
only CMY with the command setrgbcolor, and so 0 0 0 setrgbcolor tries to make black
out of CMY instead of K. To fix this, in release 2.1 of we changed some routines in pslib.c to
check if (r � g and r � b), in which case g setgray is used instead of r g b setrgbcolor.

9. Recent experience with some Tektronix Phaser printers and with commercial printing shops has
shown that this substitution creates problems precisely opposite of the problems our Versatec user
has. The Tektronix and commercial (we think it was a Scitex) machines do not use K when you say
0 setgray but they do when you say 0 0 0 setrgbcolor. We believe that these problems
are likely to disappear as the various software developers make their codes more robust. Note that
this is not a fault with : r � g � b � 0 means black and should plot that way. Thus, the
source code as shipped to you checks whether r � g and r � b, in which case it uses setgray, else
setrgbcolor. If your gray tones are not being drawn with K, you have two work-around options:
(1) edit the source for pslib.c or (2) edit your PostScript file and try using setrgbcolor in all
cases. The simplest way to do so is to redefine the setgray operator to use setrgbcolor. Insert
the line

/setgray � dup dup setrgbcolor � def

immediately following the first line in the file (starts with %!PS.)

10. Some color film writers are very sensitive to the brand of film. If black doesn’t look black on your
color slides, try a different film.

H.2 Resolution and dots per inch

The parameter DOTS PR INCH can be set by the user through the .gmtdefaults4 file or gmtset. By
default it is equal to the value in the gmt defaults.h file, which is supplied with 300 when you get
from us. This seems a good size for most applications, but should ideally reflect the resolution of your
hardcopy device (most laserwriters have at least 300 dpi, hence our default value). computes what
the plot should look like in double precision floating point coordinates, and then converts these to integer
coordinates at DOTS PR INCH resolution. This helps us find out that certain points in a path lie on top of
other points, and we can remove these, making smaller paths. Small paths are important for the laserwriter
bugs above, and also to make fill operations compute faster. Some users have set their DOTS PR INCH
to very large numbers. This only makes the PostScript output bigger without affecting the appearence of
the plot. However, if you want to make a plot which fits on a page at first, and then later magnify this same
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PostScript file to a huge size, the higher DPI is important. Your data may not have the higher resolution but
on certain devices the edges of fonts will not look crisp if they are not drawn with an effective resolution
of 300 dpi or so. Beware of making an excessively large path. Note that if you change dpi the linewidths
produced by your –W options will change, unless you have appended p for linewidth in points.

H.3 European characters

Note for users of pageview in Sun OpenWindows: now offers some octal escape sequences to load
European alphabet characters in text strings (see Section 4.16). When this feature is enabled, the header
on PostScript output includes a section defining special fonts. The definition is added to the header
whether or not your plot actually uses the fonts.

Users who view their PostScript output using pageview in OpenWindows on Sun computers
or user older laserwriters may have difficulties with the European font definition. If your installation of
OpenWindows followed a space-saving suggestion of Sun, you may have excluded the European fonts, in
which case pageview will fail to render your plot.

Ask your system administrator about this, or run this simple test: (1) View a PostScript file with
pageview. If it comes up OK, you will be fine. If it comes up blank, open the “Edit PostScript” button
and examine the lower window for error messages. (The European font problem generates lots of error
messages in this window). (2) Verify that the PostScript file is OK, by sending it to a laserwriter and mak-
ing sure it comes out. (3) If the PostScript file is OK but it chokes pageview, then edit the PostScript file,
cutting out everything between the lines:

%%%%% START OF EUROPEAN FONT DEFINITION %%%%%
� bunch of definitions �
%%%%% END OF EUROPEAN FONT DEFINITION %%%%%

Now try pageview on the edited version. If it now comes up, you have a limited subset of OpenWin-
dows installed. If you discover that these fonts cause you trouble, then you can edit your .gmtdefaults4
file to set CHAR ENCODING = Standard, which will suppress the printing of this definition in the
PostScript header. You can make output which will be viewable in pageview without any editing. However,
you would have to reset this to TRUE before attempting to use European fonts, and then the output will
become un-pageview-able again. If you try to concatenate segments of PostScript made with and
without the European fonts enabled, then you may find that you have problems, either with the definition,
or because you ask for something not defined.

H.4 Hints

When making images and perspective views of large amounts of data, the programs can take some
time to run, the resulting PostScript files can be very large, and the time to display the plot can be long. Fine
tuning a plot script can take lots of trial and error. We recommend using grdsample to make a low resolu-
tion version of the data files you are plotting, and practice with that, so it is faster; when the script is perfect,
use the full-resolution data files. We often begin building a script using only psbasemap or pscoast to
get the various plots oriented correctly on the page; once this works we replace the psbasemap calls with
the actually desired programs.

If you want to make color shaded relief images and you haven’t had much experience with it, here
is a good first cut at the problem: Set your COLOR MODEL to HSV using gmtset. Use makecpt
or grd2cpt to make a continuous color palette spanning the range of your data. Use the –Nt option on
grdgradient. Try the result, and then play with the tuning of the .gmtdefaults4, the cpt file, and the
gradient file.
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I. Color Space — The final frontier

Beginning with version 2.1.4, “Example 11” was included in the cookbook. The example makes an
RGB color cube by a simple awk script. We wrote a program to compute HSV grids for each face of this
cube, and include a version of the cube with HSV contours on it as file contoured cube.ps in /share.

In this appendix, we are going to try to explain the relationship between the RGB and HSV color
systems so as to (hopefully) make them more intuitive. allows users to specify colors in cpt files
in either system (colors on command lines, such as pen colors in –W option, are always in RGB).
uses the HSV system to achieve artificial illumination of colored images (e.g. –I option in grdimage) by
changing the s and v coordinates of the color. When the intensity is zero, the data are colored according
to the cpt file. If the intensity is non-zero, the data are given a starting color from the cptfile but this color
(after conversion to HSV if necessary) is then changed by moving (s,v) toward HSV MIN SATURATION,
HSV MIN VALUE if the intensity is negative, or toward HSV MAX SATURATION, HSV MAX VALUE
if positive. These are defined in the .gmtdefaults4 file and are usually chosen so the corresponding points
are nearly black (s = 1, v = 0) and white (s = 0, v = 1). The reason this works is that the HSV system
allows movements in color space which correspond more closely to what we mean by “tint” and “shade”;
an instruction like “add white” is easy in HSV and not so obvious in RGB.

We are going to try to give you a geometric picture of color mixing in HSV from a tour of the RGB
cube. The geometric picture is helpful, we think, since HSV are not orthogonal coordinates and not found
from RGB by an algebraic transformation. But before we begin traveling on the RGB cube, let us give two
formulae, since an equation is often worth a thousand words.

v � max
�
r� g � b �

s � �
max

�
r� g � b � � min

�
r � g � b � � � max

�
r� g � b �

Note that when r � g � b � 0 (black), the expression for s gives 0/0; black is a singular point for s. The
expression for h is not easily given without lots of “if” tests, but has a simple geometric explanation. So
here goes: Look at the cube face with black, red, magenta, and blue corners. This is the g = 0 face. Orient
the cube so that you are looking at this face with black in the lower left corner. Now imagine a right-handed
cartesian (r, g, b) coordinate system with origin at the black point; you are looking at the g � 0 plane with
r increasing to your right, g increasing away from you, and b increasing up. Keep this sense of (r, g, b) as
you look at the cube.

The RGB color cube has six faces. On three of these one of (r, g, b) is equal to 0. These three faces meet
at the black corner, where r � g � b � 0. On these three faces saturation, the S in HSV, has its maximum
value; s = 1 on these faces. (Accept this definition and ignore the s singularity at black for now). Therefore
h and v are contoured on these faces; h in gray solid lines and v in white dashed lines (v ranges from 0 to 1
and is contoured in steps of 0.1).

On the other three faces one of (r, g, b) is equal to the maximum value. These three faces meet at the
white corner, where r � g � b � 255. On these three faces value, the V in HSV, has its maximum value;
v = 1 on these faces. Therefore h and s are contoured on these faces; h in gray solid lines and s in black
dashed lines (s ranges from 0 to 1 with contours every 0.1).

The three faces where v = 1 meet the three faces where s � 1 in six edges where both s � v � 1 (and
at least one of (r, g, b) = 0 and at least one of (r, g, b) = 255). Trace your finger around these edges,
starting at the red point and moving to the yellow point, then on around. You will visit six of the eight
corners of the cube, in this order: red (h � 0); yellow (h � 60); green (h � 120); cyan (h � 180); blue
(h � 240); magenta (h � 300). Three of these are the RGB colors; the other three are the CMY colors
which are the complement of RGB and are used in many color hardcopy devices (color monitors usually
use RGB). The only cube corners you did not visit on this path are the black and white corners. Imagine
an axis running through the black and white corners. If you project the RYGCBM edge path onto a plane
perpendicular to the black-white axis, the path will look like a hexagon, with RYGCBM at the vertices,
every 60

�

apart. Now we can make a geometric definition of hue: Take a vector from the origin (black
point) to any point in the cube; project this vector onto the plane with the RYGCBM hexagon; then hue is
the angle this projected vector makes with the R direction on the hexagon. Thus hue is an angle describing
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rotation around the black-white axis. Note that by this definition, if a point is on the black-white axis, its
(r, g, b) vector will project as a point at the center of the hexagon, so its hue is undefined. Points on the
black-white axis have r � g � b, and they are shades of gray; we will call the black-white axis the gray
axis.

Let us call the points where s � v � 1 (the points on the RYGCBM path of cube edges) the “pure”
colors. If we start at a pure color and we want to whiten it, we can keep h constant and v � 1 while
decreasing s; this will move us along one of the cube faces toward the white point. If we start at a pure
color and we want to blacken it, we can keep h constant and s � 1 while decreasing v; this will move us
along one of the cube faces toward the black point. Any point in (r, g, b) space which can be thought of as
a mixture of pure color + white, or pure color + black, is on a face of the cube.

The points in the interior of the cube are a little harder to describe. The definition for h above works at
all points in (non-gray) (r, g, b) space, but so far we have only looked at (s, v) on the cube faces, not inside
it. At interior points, none of (r, g, b) is equal to either 0 or 255. Choose such a point, not on the gray
axis. Now draw a line through your point so that the line intersects the gray axis and also intersects the
RYGCBM path of edges somewhere. It is always possible to construct this line, and all points on this line
have the same hue. This construction shows that any point in RGB space can be thought of as a mixture of
a pure color plus a shade of gray. If we move along this line away from the gray axis toward the pure color,
we are “purifying” the color by “removing gray”; this move increases the color’s saturation. When we get
to the point where we cannot remove any more gray, at least one of (r, g, b) will have become zero and the
color is now fully saturated; s � 1. Conversely, any point on the gray axis is completely undersaturated, so
that s � 0 there. Now we see that the black point is special, because it is the intersection of three planes on
which s � 1, but it is on a line where s � 0; it is a singular point, and we get “0/0” in the above formula.
We see also that saturation is a measure of “purity” or “vividness” of the color.

It remains to define value, and the formula above is really the best definition. But if you like our
geometric constructions, try this: Take your point in RGB space and construct a line through it so that
this line goes through the black point; produce this line from black past your point until it hits a face on
which v � 1. All points on this line have the same hue. Note that this line and the line we made in the
previous paragraph are both contained in the plane whose equation is hue = constant. These two lines meet
at some arbitrary angle which varies depending on which point you chose. Thus HSV is not an orthogonal
coordinate system. If the line you made in the previous paragraph happened to touch the gray axis at the
black point, then these two lines are the same line, which is why the black point is special. Now, the line
we made in this paragraph illustrates the following: If your chosen point is not already at the end of the
line, where v � 1, then it is possible to move along the line in that direction so as to increase (r, g, b) while
keeping the same hue. The effect this has on a color monitor is to make the color shine more brightly, but
“brightness” has other meanings in color geometry, so let us say that if you can move in this way, you can
make your hue “stronger”; if you are already on a plane where at least one of (r, g, b) = 255, then you
cannot get a stronger version of the same hue. Thus, v measures strength. Note that it is not quite true to
say that v measures distance away from the black point, because v is not equal to � r2 �

g2 �
b2 � 255.

The RGB system is understandable because it is cartesian, and we all learned cartesian coordinates in
school. But it doesn’t help us create a tint or shade of a color; we cannot say, “We want orange, and a
lighter shade of orange, or a less vivid orange”. With HSV we can do this, by saying, “Orange must be
between red and yellow, so its hue is about h = 30; a less vivid orange has a lesser s, a darker orange has a
lesser v”. On the other hand, the HSV system is a peculiar geometric construction, it is not an orthogonal
coordinate system, and it is not found by a matrix transformation of RGB; these make it difficult in some
cases too. Note that a move toward black or a move toward white will change both s and v, in the general
case of an interior point in the cube. The HSV system also doesn’t behave well for very dark colors, where
the gray point is near black and the two lines we constructed above are almost parallel. If you are trying to
create nice colors for drawing chocolates, for example, you may be better off guessing in RGB coordinates.

Well, there you have it, folks. We’ve been doing for 10 years and all we know about color can
be written in about 2 pages. We hope we haven’t told you any lies. For more details, you should consult
a book about color systems. But as example 11 shows, a lot can be learned by experimenting with
tools. Our thanks to John Lillibridge for Example 11.
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J. Filtering of data in GMT

The programs filter1d (for tables of data indexed to one independent variable) and grdfilter (for
data given as 2-dimensional grids) allow filtering of data by a moving-window process. (To filter a grid
by Fourier transform use grdfft.) Both programs use an argument –F �

type � �
width � to specify the type

of process and the window’s width (in 1-d) or diameter (in 2-d). (In filter1d the width is a length of the
time or space ordinate axis, while in grdfilter it is the diameter of a circular area whose distance unit is
related to the grid mesh via the –D option). If the process is a median or mode estimator then the window
output cannot be written as a convolution and the filtering operation is not a linear operator. If the process
is a weighted average, as in the boxcar, cosine, and gaussian filter types, then linear operator theory applies
to the filtering process. These three filters can be described as convolutions with an impulse response
function, and their transfer functions can be used to describe how they alter components in the input as a
function of wavelength.

Impulse responses are shown here for the boxcar, cosine, and gaussian filters. Only the relative ampli-
tudes of the filter weights shown; the values in the center of the window have been fixed equal to 1 for ease
of plotting. In this way the same graph can serve to illustrate both the 1-d and 2-d impulse responses; in
the 2-d case this plot is a diametrical cross-section through the filter weights (Figure J.1).
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Figure J.1: Impulse responses for GMT filters.

Although the impulse responses look the same in 1-d and 2-d, this is not true of the transfer functions;
in 1-d the transfer function is the Fourier transform of the impulse response, while in 2-d it is the Hankel
transform of the impulse response. These are shown in Figures J.2 and J.3, respectively. Note that in 1-d
the boxcar transfer function has its first zero crossing at f � 1, while in 2-d it is around f � 1 � 2. The 1-d
cosine transfer function has its first zero crossing at f � 2; so a cosine filter needs to be twice as wide
as a boxcar filter in order to zero the same lowest frequency. As a general rule, the cosine and gaussian
filters are “better” in the sense that they do not have the “side lobes” (large-amplitude oscillations in the
transfer function) that the boxcar filter has. However, they are correspondingly “worse” in the sense that
they require more work (doubling the width to achieve the same cut-off wavelength).



APPENDIX J. FILTERING OF DATA IN GMT 125

−0.2

−0.0

0.2

0.4

0.6

0.8

1.0

G
ai

n

0 1 2 3 4 5
Frequency (cycles per filter width)

Solid Line:
Dotted Line:
Dashed Line:

Boxcar
Gaussian

Cosine

Figure J.2: Transfer functions for 1-D GMT filters.

One of the nice things about the gaussian filter is that its transfer functions are the same in 1-d and 2-d.
Another nice property is that it has no negative side lobes. There are many definitions of the gaussian filter
in the literature (see page 7 of Bracewell1). We define σ equal to 1/6 of the filter width, and the impulse
response proportional to exp � � 0 � 5

�
t � σ � 2 � . With this definition, the transfer function is exp � � 2

�
πσ f � 2 � and

the wavelength at which the transfer function equals 0.5 is about 5.34 σ, or about 0.89 of the filter width.
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Figure J.3: Transfer functions for 2-D (radial) GMT filters.

1R. Bracewell, The Fourier Transform and its Applications, McGraw-Hill, London, 444p., 1965.
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K. The GMT High-Resolution Coastline Data

Starting with version 3.0, use a completely new coastline database and the pscoast utility was been
completely rewritten to handle the new file format. Many users have asked us why it has taken so long
for to use a high-resolution coastline database; after all, such data have been available in the public
domain for years. To answer such questions we will take you along the road that starts with these public
domain data sets and ends up with the database used by .

K.1 Selecting the right data

There are two well-known public-domain data sets that could be used for this purpose. Once is known
as the World Data Bank II or CIA Data Bank (WDB) and contains coastlines, lakes, political boundaries,
and rivers. The other, the World Vector Shoreline (WVS) only contains shorelines between saltwater and
land (i.e., no lakes). It turns out that the WVS data is far superior to the WDB data as far as data quality
goes, but as noted it lacks lakes, not to mention rivers and borders. We decided to use the WVS whenever
possible and supplement it with WDB data. We got these data over the Internet; they are also available on
CD-ROM from the National Geophysical Data Center in Boulder, Colorado1.

K.2 Format required by GMT

In order to paint continents or oceans it is necessary that the coastline data be organized in polygons
that may be filled. Simple line segments can be used to draw the coastline, but for painting polygons
are required. Both the WVS and WDB data consists of unsorted line segments: there is no information
included that tells you which segments belong to the same polygon (e.g., Australia should be one large
polygon). In addition, polygons enclosing land must be differentiated from polygons enclosing lakes since
they will need different paint. Finally, we want pscoast to be flexible enough that it can paint the land or
the oceans or both. If just land (or oceans) is selected we do not want to paint those areas that are not land
(or oceans) since previous plot programs may have drawn in those areas. Thus, we will need to combine
polygons into new polygons that lend themselves to fill land (or oceans) only (Note that older versions of
pscoast always painted lakes and wiped out whatever was plotted beneath).

K.3 The long and winding road

The WVS and WDB together represent more than 100 Mb of binary data and something like 20 million data
points. Hence, it becomes obvious that any manipulation of these data must be automated. For instance, the
reasonable requirement that no coastline should cross another coastline becomes a complicated processing
step.

1. To begin, we first made sure that all data were “clean”, i.e. that there were no outliers and bad points.
We had to write several programs to ensure data consistency and remove “spikes” and bad points
from the raw data. Also, crossing segments were automatically “trimmed” provided only a few
points had to be deleted. A few hundred more complicated cases had to be examined semi-manually.

2. Programs were written to examine all the loose segments and determine which segments should be
joined to produce polygons. Because not all segments joined exactly (there were non-zero gaps
between some segments) we had to find all possible combinations and choose the simplest combi-
nations. The WVS segments joined to produce more than 200,000 polygons, the largest being the
Africa-Eurasia polygon which has 1.4 million points. The WDB data resulted in a smaller data base
( � 25% of WVS).

1www.ngdc.noaa.gov
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3. We now needed to combine the WVS and WDB data bases. The main problem here is that we
have duplicates of polygons: most of the features in WVS are also in WDB. However, because the
resolution of the data differ it is nontrivial to figure out which polygons in WDB to include and which
ones to ignore. We used two techniques to address this problem. First, we looked for crossovers
between all possible pairs of polygons. Because of the crossover processing in step 1 above we know
that there are no remaining crossovers within WVS and WDB; thus any crossovers would be between
WVS and WDB polygons. Crossovers could mean two things: (1) A slightly misplaced WDB
polygon crosses a more accurate WVS polygon, both representing the same geographic feature, or
(2) a misplaced WDB polygon (e.g. a small coastal lake) crosses the accurate WVS shoreline. We
distinguished between these cases by comparing the area and centroid of the two polygons. In almost
all cases it was obvious when we had duplicates; a few cases had to be checked manually. Second,
on many occasions the WDB duplicate polygon did not cross its WVS counterpart but was either
entirely inside or outside the WVS polygon. In those cases we relied on the area-centroid tests.

4. While the largest polygons were easy to identify by visual inspection, the majority remain unidenti-
fied. Since it is important to know whether a polygon is a continent or a small pond inside an island
inside a lake we wrote programs that would determine the hierarchical level of each polygon. Here,
level = 1 represents ocean/land boundaries, 2 is land/lakes borders, 3 is lakes/islands-in-lakes, and 4
is islands-in-lakes/ponds-in-islands-in-lakes. Level 4 was the highest level encountered in the data.
To automatically determine the hierarchical levels we wrote programs that would compare all possi-
ble pairs of polygons and find how many polygons a given polygon was inside. Because of the size
and number of the polygons such programs would typically run for 3 days on a Sparc-2 workstation.

5. Once we know what type a polygon is we can enforce a common “orientation” for all polygons.
We arranged them so that when you move along a polygon from beginning to end, your left hand is
pointing toward “land”. At this step we also computed the area of all polygons since we would like
the option to plot only features that are bigger than a minimum area to be specified by the user.

6. Obviously, if you need to make a map of Denmark then you do not want to read the entire 1.4 million
points making up the Africa-Eurasia polygon. Furthermore, most plotting devices will not let you
paint and fill a polygon of that size due to memory restrictions. Hence, we need to partition the
polygons so that smaller subsets can be accessed rapidly. Likewise, if you want to plot a world map
on a letter-size paper there is no need to plot 10 million data points as most of them will plot several
times on the same pixel and the operation would take a very long time to complete. We chose to make
5 versions on the database, corresponding to different resolutions. The decimation was carried out
using the Douglas-Peucker (DP) line-reduction algorithm2. We chose the cutoffs so that each subset
was approximately 20% the size of the next higher resolution. The five resolutions are called full,
high, intermediate, low, and crude; they are accessed in pscoast, gmtselect, and grdlandmask
with the –D option3. For each of these 5 data sets (f, h, i, l, c) we specified an equidistant grid (1

�

,
2

�

, 5
�

, 10
�

, 20
�

) and split all polygons into line-segments that each fit inside one of the many boxes
defined by these grid lines. Thus, to paint the entire continent of Australia we instead paint many
smaller polygons made up of these line segments and gridlines. Some book-keeping has to be done
since we need to know which parent polygon these smaller pieces came from in order to prescribe
the correct paint or ignore if the feature is smaller than the cutoff specified by the user. The resulting
segment coordinates were then scaled to fit in short integer format to preserve precision and written
in netCDF format for ultimate portability across hardware platforms4.

7. While we are now back to a file of line-segments we are in a much better position to create smaller
polygons for painting. Two problems must be overcome to correctly paint an area:

2Dougles, D.H., and T. K. Peucker, 1973, Algorithms for the reduction of the number of points required to represent a digitized
line or its caricature, Canadian Cartographer, 10, 112–122.

3The full and high resolution files are in separate archives because of their size. Not all users may need these files as the interme-
diate data set is better than the data provided with version 2.1.4.

4If you need complete polygons in a simpler format, see the article on GSHHS (Wessel, P., and W. H. F. Smith, 1996, A Global,
self-consistent, hierarchical, high-resolution shoreline database, J. Geophys. Res. 101, 8741–8743).
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� We must be able to join line segments and grid cell borders into meaningful polygons; how we
do this will depend on whether we want to paint the land or the oceans.

� We want to nest the polygons so that no paint falls on areas that are “wet” (or “dry”); e.g., if
a grid cell completely on land contains a lake with a small island, we do not want to paint the
lake and then draw the island, but paint the annulus or “donut” that is represented by the land
and lake, and then plot the island.

uses a polygon-assembly routine that carries out these tasks on the fly.

K.4 The Five Resolutions

We will demonstrate the power of the new database by starting with a regional hemisphere map centered
near Papua New Guinea and zoom in on a specified point. The map regions will be specified in projected
km from the projection center, e.g., we may want the map to go from -2000 km to +2000 km in the
longitudinal direction and -1500 km to +1500 km in the latitudinal direction. However, programs
expects degrees in the –R option that specifies the desired region. Given the chosen map projection we can
automate this process by using a simple cshell script that we call getbox:

range=‘(echo $2 $4; echo $3 $5) | mapproject $1 -R0/360/-90/90 -I -Fk -C‘
echo $range | awk ’{printf "-R%f/%f/%f/%fr\n",$1,$2,$3,$4}’

Also, as we zoom in on the projection center we want to draw the outline of the next map region on the
plot. To do that we need the geographical coordinates of the four corners of the region rectangle. Again,
we automate this task by adding the simple script getrect :

(echo $2 $4; echo $3 $4; echo $3 $5; echo $2 $5) | mapproject $1 -R0/360/-90/90 -I -Fk -C

K.4.1 The crude resolution (–Dc)

We begin with an azimuthal equidistant map of the hemisphere centered on 130
�

21’E, 0
�

12’S, which is
slightly west of New Guinea, near the Strait of Dampier. The edges of the map are all 9000 km true distance
from the projection center. At this scale (and for global maps) the crude resolution data will usually be
adequate to capture the main geographic features. To avoid cluttering the map with insignificant detail we
only plot features (i.e., polygons) that exceed 500 km2 in area. Smaller features would only occupy a few
pixels on the plot and make the map look “dirty”. We also add national borders to the plot. The crude
database is heavily decimated and simplified by the DP-routine: The total file size of the coastlines, rivers,
and borders is only 286 Kbytes. The plot is produced by the command (the box indicates the outline of the
next map):

gmtset GRID_CROSS_SIZE_PRIMARY 0 OBLIQUE_ANNOTATION 22 ANNOT_MIN_SPACING 0.3
pscoast ‘./getbox -JE130.35/-0.2/1i -9000 9000 -9000 9000‘ -JE130.35/-0.2/3.5i -P -Dc \

-A500 -Glightgray -W0.25p -N1/0.25tap -B20g20WSne -K > GMT_App_K_1.ps
./getrect -JE130.35/-0.2/1i -2000 2000 -2000 2000 | psxy -R -JE130.35/-0.2/3.5i -O -W1.5p -L -A \

>> GMT_App_K_1.ps

Here, we use the OBLIQUE ANNOTATION bit flags to achieve horizontal annotations and set AN-
NOT MIN SPACING to suppress some longitudinal annotations near the S pole that otherwise would
overprint.

K.4.2 The low resolution (–Dl)

We have now reduced the map area by zooming in on the map center. Now, the edges of the map are all
2000 km true distance from the projection center. At this scale we choose the low resolution data that
faithfully reproduce the dominant geographic features in the region. We cut back on minor features less
than 100 km2 in area. We still add national borders to the plot. The low database is less decimated and
simplified by the DP-routine: The total file size of the coastlines, rivers, and borders combined grows to
876 Kbytes; it is the default resolution in . The plot is generated by the command:
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Figure K.1: Map using the crude resolution coastline data.

pscoast ‘./getbox -JE130.35/-0.2/1i -2000 2000 -2000 2000‘ -JE130.35/-0.2/3.5i -P -Dl -A100 \
-Glightgray -W0.25p -N1/0.25tap -B10g5WSne -K > GMT_App_K_2.ps

./getrect -JE130.35/-0.2/1i -500 500 -500 500 | psxy -R -JE130.35/-0.2/3.5i -O -W1.5p -L -A \
>> GMT_App_K_2.ps

K.4.3 The intermediate resolution (–Di)

We continue to zoom in on the map center. In this map, the edges of the map are all 500 km true distance
from the projection center. We abandon the low resolution data set as it would look too jagged at this scale
and instead employ the intermediate resolution data that faithfully reproduce the dominant geographic
features in the region. This time, we ignore features less than 20 km2 in area. Although the script still asks
for national borders none exist within our region. The intermediate database is moderately decimated and
simplified by the DP-routine: The combined file size of the coastlines, rivers, and borders now exceeds
3.28 Mbytes. The plot is generated by the commands:

pscoast ‘./getbox -JE130.35/-0.2/1i -500 500 -500 500‘ -JE130.35/-0.2/3.5i -P -Di -A20 -Glightgray \
-W0.25p -N1/0.25tap -B2g1WSne -K > GMT_App_K_3.ps

echo 133 2 | psxy -R -J -O -K -Sc1.4i -Gwhite >> GMT_App_K_3.ps
psbasemap -R -J -O -K -Tm133/2/1i+45/10/5:: --HEADER_FONT_SIZE=12p --TICK_LENGTH=0.05i \

--ANNOT_FONT_SIZE_SECONDARY=8p >> GMT_App_K_3.ps
./getrect -JE130.35/-0.2/1i -100 100 -100 100 | psxy -R -JE130.35/-0.2/3.5i -O -W1.5p -L -A \

>> GMT_App_K_3.ps

K.4.4 The high resolution (–Dh)

The relentless zooming continues! Now, the edges of the map are all 100 km true distance from the
projection center. We step up to the high resolution data set as it is needed to accurately portray the
detailed geographic features within the region. Because of the small scale we only ignore features less than
1 km2 in area. The high resolution database has undergone minor decimation and simplification by the
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Figure K.2: Map using the low resolution coastline data.
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Figure K.3: Map using the intermediate resolution coastline data. We have added a compass rose just
because we have the power to do so.
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Figure K.4: Map using the high resolution coastline data.

DP-routine: The combined file size of the coastlines, rivers, and borders now swells to 12.2 Mbytes. The
map and the final outline box are generated by these commands:

pscoast ‘./getbox -JE130.35/-0.2/1i -100 100 -100 100‘ -JE130.35/-0.2/3.5i -P -Dh -A1 -Glightgray \
-W0.25p -N1/0.25tap -B30mg10mWSne -K > GMT_App_K_4.ps

./getrect -JE130.35/-0.2/1i -20 20 -20 20 | psxy -R -JE130.35/-0.2/3.5i -O -W1.5p -L -A \
>> GMT_App_K_4.ps

K.4.5 The full resolution (–Df)

We now arrive at our final plot, which shows a detailed view of the western side of the small island of
Waigeo. The map area is approximately 40 by 40 km. We call upon the full resolution data set to portray the
richness of geographic detail within this region; no features are ignored. The full resolution has undergone
no decimation and it shows: The combined file size of the coastlines, rivers, and borders totals a hefty 55.7
Mbytes. Our final map is reproduced by the single command:

pscoast ‘./getbox -JE130.35/-0.2/1i -20 20 -20 20‘ -JE130.35/-0.2/3.5i -P -Df -Glightgray -W0.25p \
-N1/0.25tap -B10mg2mWSne > GMT_App_K_5.ps

We hope you will study these examples to enable you to make efficent and wise use of this vast data
set.
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Figure K.5: Map using the full resolution coastline data.
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L. GMT on non-UNIX platforms

L.1 Introduction

While can be ported to non-UNIX systems such as Windows, it is also true that one of the strengths
of lies its symbiotic relationship with UNIX. We therefore recommend that be installed in a
POSIX-compliant UNIX environment such as Linux or Mac OS X. If abandoning your non-UNIX operating
system is not an option, consider one of these solutions:

WINDOWS: Choose among these four possibilities:

1. Install under Cygwin (A GNU port to Windows).

2. Install under SFU (Windows Services for UNIX); a free download from Microsoft1.

3. Install under DJGPP (another GNU port to Windows/DOS).

4. Install in Windows using Microsoft C/C++ or other compilers. Unlike the first three, this
option will not provide you with any UNIX tools so you will be limited to what you can do with
DOS batch files.

MAC OS9: Here your choice is a commercial offering called MachTen2.

L.2 Cygwin and GMT

Because works best in conjugation with UNIX tools we suggest you install using the Cygwin
product from Cygnus (now assimilated by Redhat, Inc.). This free version works on any Windows version
and it comes with both the Bourne Again shell bash and the tcsh . You also have access to most standard
GNU development tools such as compilers and text processing tools (awk , grep, sed , etc.).

Follow the instructions on the Cygwin page3 on how to install the package; note you must explicitly add
all the development tool packages (e.g., gcc etc) as the basic installation does not include them by default.
Once you are up and running under Cygwin, you may install the same way you do under any other
UNIX platform by either running the automated install via install gmt or manually running configure first,
then type make all. For details see the general README file.

L.3 SFU and GMT

SFU4 is also similar to Cygwin in that it provides precompiled UNIX tools for DOS/WIN32, including the
csh shell.

L.4 DJGPP and GMT

DJGPP5 is similar to Cygwin in that it provides precompiled UNIX tools for DOS/WIN32, including the
bash shell. At the time of this writing we have not been successful in compiling netCDF in this envi-
ronment. This is fully due to our limited understanding of the innards of the netCDF installation whose
configure script did not work for us. As soon as this problem is overcome we expect a smooth install
similar to that of Cygwin.

1Microsoft Services for UNIX is formerly known as Interix, in the distant past known as OpenNT.
2www.tenon.com
3sources.redhat.com/cygwin
4See www.microsoft.com/Windows/sfu for details.
5See www.gnu.org for details.
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L.5 WIN32 and GMT

will compile and install using the Microsoft Visual C/C++ compiler. We expect other WIN32 C com-
pilers to give similar results. Since configure cannot be run you must manually rename gmt notposix.h.in
to gmt notposix.h. The netCDF home page gives full information on how to compile and install netCDF;
precompiled libraries are also available. At present we simply have a lame gmtinstall.bat file that compiles
the entire package, and gmtsuppl.bat which compiles most of the supplemental programs. If you just
need to run and do not want to mess with compilations, get the precompiled binaries from the
ftp sites.

L.6 OS/2 and GMT

has been ported to OS/2 by Allen Cogbill6, Los Alamos National Laboratory. One must have EMX7

installed in order to use the executables. All features that are present in the UNIX version of are
available in the OS/2 version. All executables may be obtained using links in the following document8,
which provides more detail on the port.

L.7 Mac OS and GMT

has not been ported to the classical Macintosh platform (i.e. Mac OS 9.x or earlier). For that OS
your only option is MachTen. However, will install directly under Mac OS X.

6mailto:ahc@lanl.gov
7ftp://ftp.geophysics.lanl.gov/pub/EES3/pub/gmt/emxrt.zip
8ftp://ees.lanl.gov/pub/EES3/pub/gmt/gmt4os2.html
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M. Built-in color palette tables

has 20 built-in color palette tables (master cpt files). The following is a plot of each one:

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

split wysiwyg

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

sealand seis

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

relief topo

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

rainbow red2green

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

ocean polar

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

jet no_green

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

haxby hot

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

drywet gray

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

gebco globe

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

cool copper

Figure M.1: The standard 20 cpt files supported by GMT.

The programs makecpt and grd2cpt are used to access these master tables and translate/scale them
to fit the user’s range of z-values. The final cpt tables can be discrete (top half of each scale) or continuous
(bottom half).
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N. Custom Plot Symbols

comes with several custom plot symbols ready to go. They are used in psxy and psxyz using the
–Sk option. To make your own custom plot symbol, please follow the instructions given in the man pages
of those two programs. The following is a plot of each symbol. Note that we only show the symbol outline
and not any fill. Be aware that some symbols may have a hardwired fill or no-fill component. Also note that
some symbols, in particular the geometric ones, appears to duplicate what is already available as built-in
symbols. However, the custom symbols differ in that they may be filled with patterns.

ASTROID CIRCLE CROSS CROSSHAIR DELTOID

DIAMOND FLASH HEXAGON HLENS HLOZENGE

HNEEDLE INVTRIANGLE LCRESCENT LFLAG LTRIANGLE

MECA OCTAGON PACMAN PENTAGON RCRESCENT

RFLAG RTRIANGLE SECTOID SQUARE SQUAROID

Figure N.1: Custom plot symbols supported by GMT.
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STAR STAR3 STAR4 STARP SUN

TRIANGLE VLENS VLOZENGE VNEEDLE VOLCANO

Figure N.2: Additional custom plot symbols
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O. Annotation of Contours and “Quoted Lines”

The programs grdcontour (for data given as 2-dimensional grids) and pscontour (for x,y,z tables)
allow for contouring of data sets, while psxy and psxyz can plot lines based on x,y- and x,y,z-tables,
respectively. In both cases it may be necessary to attach labels to these lines. Clever or optimal placements
of labels is a very difficult topic, and provides several algorithms for this placement as well as
complete freedom in specifying the attributes of the labels. Because of the richness of these choices we
present this Appendix which summarizes the various options and gives several examples of their use.

O.1 Label Placement

While the previous verions 1–3 allowed for a single algorithm that determined where labels would be
placed, 4 allows for five different algorithms. Futhermore, a new “symbol” option (–Sq for “quoted
line”) has been added to psxy and psxyz and hence the new label placement mechanisms apply to those
programs as well. The contouring programs expect the algorithm to be specified as arguments to –G while
the line plotting programs expect the same arguments to follow –Sq. The information appended to these
options is the same in both cases and is of the form [code]info. The five algorithms correspond to the five
codes below (some codes will appear in both upper and lower case; they share the same algorithm but differ
in some other ways). In what follows, the phrase “line segment” is taken to mean either a contour or a line
to be labelled. The codes are:

d: Full syntax is ddist[c � i � m � p][/frac]. Place labels according to the distance measured along the projected
line on the map. Append the unit you want to measure distances in [Default is taken from MEA-
SURE UNIT]. Starting at the beginning of a line, place labels every dist increment of distance along
the line. To ensure that closed lines whose total length is less than dist get annotated, we may append
frac which will place the first label at the distance d � dist � frac from the start of a closed line (and
every dist thereafter). If not given, frac defaults to 0.25.

D: Full syntax is Ddist[d � e � k � m � n][/frac]. This option is similar to d except the original data must be
referred to geographic coordinates (and a map projection must have been chosen) and actual Earth1

surface distances along the lines are considered. Append the unit you want to measure distances in;
choose among degree, meter [Default], kilometer, statute miles, or nautical miles. Other aspects are
similar to code d.

f: Full syntax is ffix.d[/slop[c � i � m � p]]. Here, an ASCII file fix.d is given which must contain records whose
first two columns hold the coordinates of points along the lines at which locations the labels should be
placed. Labels will only be placed if the coordinates match the line coordinates to within a distance
of slop (append unit or we use MEASURE UNIT). The default slop is zero, meaning only exact
coordinate matches will do.

l: Full syntax is lline1[,line2[, ...]]. One or more straight line segments are specified separated by commas,
and labels will be placed at the intersections between these lines and our line segments. Each line
specification implies a start and stop point, each corresponding to a coordinate pair. These pairs can
be regular coordinate pairs (i.e., longitude/latitude separated by a slash), or they can be two-character
codes that refer to predetermined points relative to the map region. These codes are taken from the
pstext justification keys [L � C � R][B � M � T] so that the first character determines the x-coordinate and
the second determines the y-coordinate. In grdcontour, you can also use the two codes Z+ and
Z- as shorthands for the location of the grid’s global maximum and minimum, respectively. For
example, the line LT/RB is a diagonal from the upper left to the lower right map corner, while
Z-/135W/15S is a line from the grid minimum to the point (135

�

W, 15
�

S).

L: Same as l except we will treat the lines given as great circle start/stop coordinates and fill in the points
between before looking for intersections.

1or whatever planet we are dealing with.
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n: Full syntax is nnumber[/minlength[c � i � m � p]]. Place number of labels along each line regardless of total
line length. The line is divided into number segments and the labels are placed at the centers of these
segments. Optionally, you may give a minlength distance to ensure that no labels are placed closer
than this distance to its neighbors.

N: Full syntax is Nnumber[/minlength[c � i � m � p]]. Similar to code n but here labels are placed at the ends
of each segment (for number

�
2). A special case arises for number � 1 when a single label will be

placed according to the sign of number: � 1 places one label justified at the start of the line, while
�

1 places one label justified at the end of the line.

x: Full syntax is xcross.d. Here, an ASCII file cross.d is a multi-segment file whose lines will intersect our
segment lines; labels will be placed at these intersections.

X: Same as x except we treat the lines given as great circle start/stop coordinates and fill in the points
between before looking for intersections.

Only one algorithm can be specified at any given time.

O.2 Label Attributes

Determining where to place labels is half the battle. The other half is to specify exactly what are the
attributes of the labels. It turns out that there are quite a few possible attributes that we may want to control,
hence understanding how to specify these attributes becomes important. In the contouring programs, one or
more attributes may be appended to the –A option using the format +code[args] for each attribute, whereas
for the line plotting programs these attributes are appended to the –Sq option following a colon (:) that
separates the label codes from the placement algorithm. Several of the attributes do not apply to contours
so we start off with listing those that apply universially. These codes are:

+a: Controls the angle of the label relative to the angle of the line. Append p for parallel [Default], n for
normal, or a fixed angle measured counter-clockwise relative to the horizontal.

+c: Surrounding each label is an imaginary label “textbox” which defines a region in which no segment
lines should be visible. The initial box provides an exact fit to the enclosed text but clearance may
be extended in both the horizontal and vertical directions (relative to the label baseline) by the given
amounts. If these should be different amounts please separate them by a slash; otherwise the single
value applies to both directions. Append the distance units of your choice (c � i � m � p), or give % to
indicate that the clearance should be this fixed percentage of the label font size in use. The default is
15%.

+d: Debug mode. This is useful when testing contour placement as it will draw the normally invisible
helper lines and points in the label placement algorithms above.

+f: Specifies the desired label font. See pstext for font names or numbers. The default font is given by
ANNOT FONT PRIMARY.

+g: Selects opaque rather than the default transparent textboxes. You may optionally append the color you
want to fill the label boxes; the default is the same as PAGE COLOR.

+j: Selects the justification of the label relative to the placement points determined above. Normally this
is center/mid justified (CM in pstext justification parlance) and this is indeed the default setting.
Override by using this option and append another justification key code from [L � C � R][B � M � T]. Note
for curved text (+v) only vertical justification will be affected.

+k: Sets the color of the text labels, which otherwise defaults to that given by COLOR BACKGROUND.

+o: Request a rounded, rectangular label box shape; the default is rectangular. This is only manifested if
the box is filled or outlined, neither of which is implied by this option alone (see +g and +p). As this
option only applies to straight text, it is ignored if +v is given.
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+p: Selects the drawing of the label box outline; append your preferred pen unless you want the default
pen [0.25p,black].

+r: Do not place labels at points along the line whose local radius of curvature falls below the given
threshold value. Append the radius unit of your choice (c � i � m � p) [Default is 0].

+s: Change the font size of the labels, which by default is 9 points.

+u: Append the chosen unit to the label. Normally a space will separate the label and the unit. If you
want to close this gap, append a unit that begins with a hyphen (–). If you are contouring with
grdcontour and you specify this option without appending a unit, the unit will be taken from the
z-unit attribute of the grid header.

+v: Place curved labels that follow the wiggles of the line segments. This is especially useful if the labels
are long relative to the length-scale of the wiggles. The default places labels on an invisible straight
line at the angle determined.

+w: The angle of the line at the point of label placement is calculated by a least-squares fit to the width
closest points. If not specified, width defaults to 10.

+=: Similar in most regards to +u but applies instead to a label prefix which you must append.

For contours, the label will be the value of the contour (possibly modified by +u or +=). However, for
quoted lines other options apply:

+l: Append a fixed label that will be placed at all label locations. If the label contains spaces you must
place it inside matching quotes.

+L: Append a code flag that will determine the label. Available codes are:

+Lh: Take the label from the current multi-segment header (hence it is assumed that the input line
segments are given in the multi-segment file format; if not we pick the single label from the
file’s header record). We first scan the header for an embedded –Llabel option; if none is found
we instead use the first word following the segment marker [ � ].

+Ld: Take the Cartesian plot distances along the line as the label; append c � i � m � p as the unit [Default
is MEASURE UNIT]. The label will be formatted according to the D FORMAT string, unless
label placement was determined from map distances along the segment lines, in which case we
determine the appropriate format from the distance value itself.

+LD: Calculate actual Earth surface distances and use the distance at the label placement point as
the label; append d � e � k � m � n to specify the unit [If not given we default to degrees, unless label
placement was determined from map distances along the segment lines, in which case we use
the same unit specified for that algorithm]. Requires a map projection to be used.

+Lf: Use all text after the 2nd column in the fixed label location file fix.d as labels. This choice
obviously requires the fixed label location algorithm (code f) to be in effect.

+Ln: Use the running number of the current multi-segment as label.

+LN: Use a slash-separated combination of the current file number and the current multi-segment
number as label.

+Lx: As h but use the multi-segment headers in the cross.d file instead. This choice obviously
requires the crossing segments location algorithm (code x � X) to be in effect.

O.3 Examples of Contour Label Placement

We will demonstrate the use of these options with a few simple examples. First, we will contour a subset
of the global geoid data used in Example 01; the region selected encompasses the world’s strongest
“geoid dipole”: the Indian Low and the New Guinea High.
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O.3.1 Equidistant labels

Our first example uses the default placement algorithm. Because of the size of the map we request contour
labels every 1.5 inches along the lines:

pscoast -R50/160/-15/15 -JM5.5i -Glightgray -A500 -K -P > GMT_App_O_1.ps
grdcontour geoid.grd -J -O -B20f10WSne -C10 -A20+s8 -Gd1.5i -S10 -T:LH >> GMT_App_O_1.ps

As seen in Figure O.1, the contours are placed rather arbitrary. The string of countours for � 40 to 60 align
well but that is a fortuitous consequence of reaching the 1.5 inch distance from the start at the bottom of
the map.
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Figure O.1: Equidistant contour label placement with –Gd, the only algorithm available in previous GMT
versions.

O.3.2 Fixed number of labels

We now exercise the option for specifying exactly how many labels each contour line should have:

pscoast -R50/160/-15/15 -JM5.5i -Glightgray -A500 -K -P > GMT_App_O_2.ps
grdcontour geoid.grd -J -O -B20f10WSne -C10 -A20+s8 -Gn1/1i -S10 -T:LH >> GMT_App_O_2.ps

By selecting only one label per contour and requiring that labels only be placed on contour lines whose
length exceed 1 inch, we achieve the effect shown in Figure O.2.

L

H
−100

−80

−60

−40

−
40

−
20 0 20 40

60

60˚E 80˚E 100˚E 120˚E 140˚E 160˚E

0˚

Figure O.2: Placing one label per contour that exceed 1 inch in length, centered on the segment with –Gn.

O.3.3 Prescribed label placements

Here, we specify four points where we would like contour labels to be placed. Our points are not exactly
on the contour lines so we give a nonzero “slop” to be used in the distance calculations: The point on the
contour closest to our fixed points and within the given maximum distance will host the label.
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cat << EOF > fix.d
80 -8.5
55 -7.5
102 0
130 10.5
EOF
pscoast -R50/160/-15/15 -JM5.5i -Glightgray -A500 -K -P > GMT_App_O_3.ps
grdcontour geoid.grd -J -O -B20f10WSne -C10 -A20+d+s8 -Gffix.d/0.1i -S10 -T:LH >> GMT_App_O_3.ps

The angle of the label is evaluated from the contour line geometry, and the final result is shown in Fig-
ure O.3.
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Figure O.3: Four labels are positioned on the points along the contours that are closest to the locations
given in the file fix.d in the –Gf option.

To aid in understanding the algorithm we chose to specify “debug” mode (+d) which placed a small
circle at each of the fixed points.

O.3.4 Label placement at simple line intersections

Often, it will suffice to place contours at the imaginary intersections between the contour lines and a well-
placed straight line segment. The –Gl or –GL algorithms work well in those cases:

pscoast -R50/160/-15/15 -JM5.5i -Glightgray -A500 -K -P > GMT_App_O_4.ps
grdcontour geoid.grd -J -O -B20f10WSne -C10 -A20+d+s8 -GLZ-/Z+ -S10 -T:LH >> GMT_App_O_4.ps

The obvious choice in this example is to specify a great circle between the high and the low, thus placing
all labels between these extrema.
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Figure O.4: Labels are placed at the intersections between contours and the great circle specified in the
–GL option.

The thin debug line in Figure O.4 shows the great circle and the intersections where labels are plotted. Note
that any number of such lines could be specified; here we are content with just one.
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O.3.5 Label placement at general line intersections

If (1) the number of intersecting straight line segments needed to pick the desired label positions becomes
too large to be given conveniently on the command line, or (2) we have another data set or lines whose
intersections we wish to use, the general crossing algorithm makes more sense:

pscoast -R50/160/-15/15 -JM5.5i -Glightgray -A500 -K -P > GMT_App_O_5.ps
grdcontour geoid.grd -JM -O -B20f10WSne -C10 -A20+d+s8 -GXcross.d -S10 -T:LH >> GMT_App_O_5.ps
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Figure O.5: Labels are placed at the intersections between contours and the multi-segment lines specified
in the –GX option.

In this case, we have created three strands of lines whose intersections with the contours define the label
placements, presented in Figure O.5.

O.4 Examples of Label Attributes

We will now demonstrate some of the ways to play with the label attributes. To do so we will use psxy
on a great-circle line connecting the geoid extrema, along which we have sampled the ETOPO5 relief data
set. The file transect.d thus contains lon, lat, dist, geoid, relief, with distances in km.

O.4.1 Label placement by along-track distances, 1

This example will change the orientation of labels from along-track to across-track, and surrounds the
labels with an opaque, outlined textbox so that the label is more readable. We choose the place the labels
every 1000 km along the line and use that distance as the label. The labels are placed normal to the line:

pscoast -R50/160/-15/15 -JM5.5i -Glightgray -A500 -K -P > GMT_App_O_6.ps
grdcontour geoid.grd -J -O -K -B20f10WSne -C10 -A20+d+s8 -Gl50/10S/160/10S -S10 \

-T:’-+’ >> GMT_App_O_6.ps
psxy -R -J -O -SqD1000k:+g+LD+an+p -W1p transect.d >> GMT_App_O_6.ps
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Figure O.6: Labels attributes are controlled with the arguments to the –Sq option.

The composite illustration in Figure O.6 shows the new effects. Note that the line connecting the extrema
does not end exactly at the ‘-’ and ‘+’ symbols. This is because the placements of those symbols are based
on the mean coordinates of the contour and not the locations of the (local or global) extrema.

O.4.2 Label placement by along-track distances, 2

A small variation on this theme is to place the labels parallel to the line, use spherical degrees for placement,
append the degree symbol as a unit for the labels, choose a rounded rectangular textbox, and inverse-video
the label:

pscoast -R50/160/-15/15 -JM5.5i -Glightgray -A500 -K -P > GMT_App_O_7.ps
grdcontour geoid.grd -J -O -K -B20f10WSne -C10 -A20+d+um+s8 -Gl50/10S/160/10S -S10 \

-T:-+ >> GMT_App_O_7.ps
psxy -R -J -O -SqD15d:+gblack+kwhite+Ld+o+u-\\260 -W1p transect.d >> GMT_App_O_7.ps

The output is presented as Figure O.7.
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Figure O.7: Another label attribute example.

O.4.3 Using a different data set for labels

In the next example we will use the bathymetry values along the transect as our label, with placement
determined by the distance along track. We choose to place labels every 1500 km. To do this we need to
pull out those records whose distances are multiples of 1500 km and create a “fixed points” file that can be
used to place labels and specify the labels. This is done with awk .

awk ’{if (NR > 1 && ($3 % 1500) == 0) print $1, $2, int($5)}’ transect.d > fix2.d
pscoast -R50/160/-15/15 -JM5.5i -Glightgray -A500 -K -P > GMT_App_O_8.ps
grdcontour geoid.grd -J -O -K -B20f10WSne -C10 -A20+d+um+s8 -Gl50/10S/160/10S -S10 \

-T:-+ >> GMT_App_O_8.ps
psxy -R -J -O -Sqffix2.d:+g+an+p+Lf+um+s8 -W1p transect.d >> GMT_App_O_8.ps
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The output is presented as Figure O.8.
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Figure O.8: Labels based on another data set (here bathymetry) while the placement is based on distances.

O.5 Putting it all together

Finally, we will make a more complex composite illustration that uses several of the label placement and
label attribute settings discussed in the previous sections. We make a map showing the tsunami travel times
(in hours) from a hypothetical catastrophic landslide in the Canary Islands2. We lay down a color map
based on the travel times and the shape of the seafloor, and travel time contours with curved labels as well
as a few quoted lines. The final script is

R=-R-85/5/10/55
grdgradient topo5.grd -Nt1 -A45 -Gtopo5_int.grd
gmtset PLOT_DEGREE_FORMAT ddd:mm:ssF ANNOT_FONT_SIZE_PRIMARY +9p
project -E74W/41N -C17W/28N -G10 -Q > great_NY_Canaries.d
project -E74W/41N -C2.33/48.87N -G100 -Q > great_NY_Paris.d
km=‘echo 17W 28N | mapproject -G74W/41N/k -fg --D_FORMAT=%.0f | cut -f3‘
cat << EOF > ttt.cpt
0 lightred 3 lightred
3 lightyellow 6 lightyellow
6 lightgreen 100 lightgreen
EOF
grdimage ttt_atl.grd -Itopo5_int.grd -Cttt.cpt $R -JM5.5i -P -K > GMT_App_O_9.ps
grdcontour ttt_atl.grd -R -J -O -K -C0.5 -A1+u"hour"+v+s8+f17 -GL80W/31N/17W/26N,17W/28N/17W/50N \

-S2 >> GMT_App_O_9.ps
psxy -R -J -W7p,white great_NY_Canaries.d -O -K >> GMT_App_O_9.ps
pscoast -R -J -B20f5:."Tsunami Travel Times from the Canaries":WSne -N1/thick -O -K -Glightgray \

-Wfaint -A500 >> GMT_App_O_9.ps
gmtconvert great_NY_*.d -E | psxy -R -J -O -K -Sa0.15i -Gred -Wthin >> GMT_App_O_9.ps
psxy -R -J -W1p great_NY_Canaries.d -O -K -W1p \

-Sqn1:+f6+s8+l"Distance Canaries to New York = $km km"+ap+v >> GMT_App_O_9.ps
psxy -R -J great_NY_Paris.d -O -K -Sc0.08c -Gblack >> GMT_App_O_9.ps
psxy -R -J -W0.5p great_NY_Paris.d -O -K -SqD1000k:+an+o+gblue+kwhite+LDk+s7+f1 >> GMT_App_O_9.ps
cat << EOF | pstext -R -J -O -K -WwhiteOthin -Dj0.1i/0.1i >> GMT_App_O_9.ps
74W 41N 8 0 17 RT New York
2.33E 48.87N 8 0 17 CT Paris
17W 28N 8 0 17 CT Canaries
EOF
psxy -R -J -O /dev/null >> GMT_App_O_9.ps
rm -f great_NY_Canaries.d great_NY_Paris.d ttt.cpt

with the complete illustration presented as Figure O.9.

2Travel times were calculated using Geoware’s travel time calculator, ttt .
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Should a catastrophic landslide occur it is possible that New York will experience a large tsunami about 8
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P. Using both GMT 3 and 4

We encourage all users to start using version 4 immediately; it has been tested extensively by the
team and has benefitted from bug reports for the 3.4.x versions. Users who still worry about the new

version breaking things may install both 3.4.5 and 4 and use our utility gmtswitch to select their
current version should the need to switch arises. You will find gmtswitch in the top-level 4 directory;
install as explained below.

Because 4 is backwards compatible with the 3.4.x series yet maintains its parameters and his-
tory in separate hidden files (e.g., .gmtdefaults4 versus .gmtdefaults) it is possible to install and use both
versions on the same workstation. To simplify such setups we supply the utility gmtswitch which sim-
plifies switching back and forth between any number of installed 3-versions and 4. Place the
gmtswitch Bourne shell script in your general executable path (not in one of the bin directories) and
run it after you have finished installing all versions of interest. The first time you run gmtswitch it
will try to find all the available versions installed on your file system. The versions found will be listed
in the file .gmtversions in your home directory; each line is the full path to a root directory (e.g.,
/usr/local/GMT3.4.2). You may manually add or remove entries there at any time. You are then instructed
to make two changes to your environment (the details are shell-dependent but explained by gmtswitch ):

1. Define the environmental variable GMTHOME to point to $HOME/this gmt, where $HOME is
the full path to your home directory. Here, this gmt is a symbolic link that will be created and
maintained by gmtswitch to point to a directory with one of the installed versions.

2. Make sure $GMTHOME/bin is in your executable PATH.

Make those edits, logout, and log and back in again. The next time you run gmtswitch you will be able to
switch between versions. Typing gmtswitch with no argument will list the available versions in a numerical
menu and prompt you to choose one, whereas gmtswitch version will immediately switch to that version
(version must be a piece of unique text making up the full path to a verson, e.g., 3.4.2). If you use tcsh or
csh you may have to type “rehash” to initiate the path changes.
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