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Abstract--We present a generalized beam theory in which deformation and load are determined 
simultaneously, in order to analyze statically indeterminant problems involving long bones. We regard a 
long bone as a beam curved in three dimensions for which the cross-sectional properties vary continuously 
along its length. The theory is used to determine the force, moment, deflection and twist along the fifth 
metatarsal when it is subjected to both a pointwise and a distributed load. 

INTRODUCTION 

The idea of analyzing the stresses in long bones using 
beam theory is a fairly obvious one and can be traced 
at least as far back as 1917, when the American Journal 
of Anatomy published a comprehensive study of the 
femur by Koch (1917), in which he discussed basic 
principles of engineering mechanics and gave a careful 
review of beam theory. Regarding the femur as a 
curved beam in two dimensions, he traced out an 
approximate neutral axis on the bone, sliced it into 75 
cross-sections perpendicular to this axis and com- 
puted the area and principle moments of inertia for 
each section. The resultant force and moment along 
the bone were determined from the applied external 
loads using simple considerations of static equilib- 
rium, and the distribution of these loads through the 
cross-section were found from standard techniques 
using the area and moments of inertia at that section. 
Koch discussed various physiological and anatomical 
features of the bone in the light of his results. His 
analysis has been frequently repeated, applied to other 
bones and extended to represent the bone as curved in 
three dimensions (Cowin et al., 1985; Huiskes, 1982; 
Rybicki et al., 1972; Torodis, 1969). 

Although most investigators now use finite element 
techniques to determine the stresses within bones, and 
these analyses have generally supported the appro- 
priateness of simple beam theory (Rybicki et al., 1972; 
Valliappan et al., 1977), the ideas introduced by Koch 
have never been developed to the point where the full 
power of beam theory can be brought to bear on 
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problems of orthopedic biomechanics. The simple 
statically determinate problems that were the focus of 
past studies permit immediate computation of the 
resulting force and moment at any cross-section 
through considerations of equilibrium, and the dis- 
tributions of stress within the cross-section are then 
calculated by standard means. However, most of the 
problems occurring in orthopedic biomechanics are 
statically indeterminant. Generally a bone is held at its 
ends by ligaments and the forces exerted by these 
ligaments are affected by the deformation of the bone. 
A bone cantilevered at one end, or supported by pin- 
joints at each end, and therefore presenting a simple 
statically determinant problem, is not a biomechan- 
ically realistic situation. Even more interesting uses for 
beam theory are offered by the system consisting of the 
radius, ulna and humerus or the tibia, fibula and 
femur. In the latter case, for example, the load is 
transmitted by the femur onto the tibia and fibula in a 
complex manner that can only be determined by the 
simultaneous consideration of the loading and distor- 
tion of all three bones. The rib cage is a complex 
statically indeterminate structure composed of many 
long bones, each affected by the load placed on every 
one of the others. A further example is presented by 
the fifth metatarsal, which because of its anatomical 
disposition, is subjected to a distributed load along its 
length. This distributed load is affected by the defor- 
mation of the bone, and an interesting statically 

indeterminant problem in beam theory results. 
In this paper we present a general theory of beams, 

in which the deformation and load are simultaneously 
considered, in a manner suitable for application to 
long bones. The bone is regarded as a beam curved in 
three dimensions for which the cross-sectional 
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properties vary continuously along its length. As 
originally noted by Koch, the cross-sectional proper- 
ties in the plane taken perpendicular to the centroidal 
axis are required for the theory. Clearly, the centroidal 
axis cannot be determined until the bone is cross- 
sectioned, so as a practical matter we develop the 
theory in terms of data that can be collected from a 
series of parallel cross-sections taken perpendicular to 
a fixed axis oriented along the general direction of the 
bone. We illustrate the use of our theory by obtaining 
appropriate data for the fifth metatarsal and calcu- 
lating the load and deformation along the length of the 
bone when it is subjected to both a pointwise and a 

distributed load. 

THE GOVERNING EQUATIONS 

The centroidal axis of the bone is a three-dimen- 
sional curve, defined in the fixed coordinate system 

(x. Y, 2) by x=)7(s), Y =Y(s)> z-z s, w - -( ) h ere s is arc 
length. At each location s along the curve we define a 
local coordinate system [x’(s), y’(s), z’(s)] by the or- 
thogonal transformation 

as illustrated in Fig. 1. This transformation is chosen 
so that the z’ axis is tangent to the centroidal axis at 
the location s and x’, y’ are the principle axes of the 
cross-section perpendicular to the centroidal axis. If i, 
j, k are the unit vectors along the fixed (x, y. z) axes, 
and if I’(s), j’(s), k’(s) are the unit vectors along the local 
coordinate axes [x’(s), y’(s), z’(s)], then 

At each location s, the internal forces exerted across 
a surface normal to the centroidal axis by that portion 
of the bone corresponding to lesser values of s upon 
that portion of the bone corresponding to greater 
values of s are equivalent to a force F(s) through the 
centroid and a moment M(s). Under the action of 
applied loads, the centroidal axis at location s under- 
goes a displacement D(s), and the local coordinate 

system there undergoes a rotation T(s). We shall 
derive a system of 12 coupled differential equations for 
the components of these four vectors referred to the 
fixed axes (x, y, z). 

Figure 2 shows the portion of the bone between s 
and (s+As). Because the bone is only slightly curved 
and its cross-sectional area varies slowly, this small 
element may be regarded as a cylinder with axis z’(s) 
and ends perpendicular to its generators. The equa- 
tions relating the forces and deformation for such an 
element can be readily derived when referred to the 
principle axes x’(s), y’(s), z’(s) (see, for example, Timo- 
shenko and Young, 1945). Forces F(s) and - F(s + As) 
act on the end surfaces and a distributed load acts on 
the cylindrical surface as a result of the interaction 
between the bone and its environment. This distribu- 
ted load is equivalent to a force P*(s, As) acting 
through the centroid of the volume element and a 
moment Q*(s, As). We define the distributed load per 
unit length, P(s), and the distributed moment per unit 

length, Q(s), by 

P*(s, As) 
P(s)= lim ~ Q(s)= ]im Q*(s. 

*s-o As ’ AS-0 As 

From a balance of the forces acting on the volume 
element, we obtain 

(1) 
ds ~’ 

I 

A balance of the moments about the centroidal axis at 
the location s yields 

M(s)-M(s+As)+Q*(s,As) 

+(As/2)k’x P*(s, As) 

-Ask’xF(s+As)=O. 

In the limit As+O, this gives 

dM 
-= -k’x F+Q. 
ds 

We-note that Q must be a vector of the form Q= lQlk’, 
and that for frictionless distributed load P*k’=O. 

The displacement D(s+As) at the point (s+As) 
along the centroidal axis differs from the displacement 
D(s) at the point s because of the change in the 
distance between s and s+As and because of a rota- 

Fig. 1. The local coordinate system. Fig. 2. The portion of the bone between s and (s+As). 
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tion T(s) in the local coordinate system at s. Therefore 

dD 1 
-_= 
ds 

---(k’.F)k’-k’xT, 
EA’(s) 

(3) 

where E is Young’s modulus and A’ is the cross- 

sectional area. 
The components, referred to the local coordinate 

system, of the forces and moments acting on the end 
surfaces of the element between s and (s+As) are 
illustrated in Fig. 3. The J’ component of the force F at 
(s + As) causes a difference in the y’ component of the 
displacement at s and sfhs given by D,.(s)-D,,(s 
+ As)= F,.(s+As)(k,./A’G)As where k,. is a factor 
depending on the shape of the cross-section at s and G 
is the shear modulus. Using dD,./ds= - T,.. derived 
earlier, adding the effect of the moments, and recalling 

equation (l), we obtain 

(4) 

where k, is also a factor depending on the shape of the 

cross-section, and I,.,,, I,.,. are the principle moments 

of inertia. 
The segment from s to (s f As) twists about the z’ 

axis because of the moment M,. and because the force 
F acts through the centroid and not through the shear 
center of the cross-section. If -u:(s), y:(s) are the local 
coordinates of the shear center then 

where K’ depends on the cross-section shape and KG 
is the torsional rigidity. 

Defining the 12-vector 

@‘=(Fx., F,.. F,., M,., M,,, ML,, 

D,,, D,,> D,., L. q,.. T,,)‘, (7) 

where the superscript Tdenotes transpose, the govern- 
ing equations (l-6) can be written in matrix form as 

It follows in a completely analogous manner that 
$Q;=A:,@;+B;. (8) 

dR,. 
_zz -&M,.-%I’,., 
ds 1’) 

(5) 
Afj are the components of a 12 x 12 matrix A, given by 

A’ zz 

0 0 

0 0 
0 0 

0 1 

-1 0 

0 0 
0 0 

0 0 

0 0 0 

Y, - x;. - -- 0 
KG K’G 

0 

0 

0 

0 

0 

0 

0 

0 

0 

-1 

EL.,, 

0 

0 

0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

0 0 0 

0 0 0 

-1 

EI,.,. 
0 0 

-1 
0 0 

KG 

0 

0 
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0 

0 

0 

0 

0 

0 

0 

0 
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0 
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- 
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0 

0 
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0 

1 

0 
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0 
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0 

0 
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0 
I 

0 

0 

0 

0 

0 

0- 

0 
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0 
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0 
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0 

(9) 

-M,, (s+As) 
-F,, (s+As) 

I 

/ ‘J -F,.(s+As) 
.My, (s+As) 

Fig. 3. The components, referred to the local coordinate system, of the forces and moments acting on the 
element between s and (s + As). 
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and Bi are the components of the vector B’ given by 

B’= P,., P,,, 0, 0, 0, Q,,, 0, 0, 0, 

$$., -&P,,,O T. 
> 

(10) 

We have assumed here that P and Q are known 
functions, independent of @‘. We will discuss in a later 
section the modifications that are necessary when they 
depend on the deflection of the bone. 

Equation (8) applies to the small cylindrical element 
between s and (s + As) and was derived for the compo- 
nents of F, M, D and T referred to the local coordinate 
system (x’, y’, z’) at s. It cannot be regarded as a global 
equation valid for all s unless it is rewritten in terms of 
the components referred to the fixed coordinate sys- 
tem (x, y, z). Defining the vector CD by 

@=(F,, F,, F,, M,, M,, M,, D,, D,, D,, T,, Ty> T,), 
(11) 

and the matrix N by 

(12) 

where 0 denotes a 3 x 3 zero matrix, it follows that 

@; = NijQj. (13) 

Equation (8) can then be put into the form 

$rmD+B, (14) 

where A=(N-‘A’N)*secq%, B=(N-‘B’)sec$, and 
d(s) is the angle between the centroidal axis and the 
fixed z-axis. Removing N from inside the derivative is 
justified, since for the small cylindrical element the 
(x’, y’, z’) coordinate system is fixed and s is distance 
along the z’ axis. However, in the present form, 
equation (14) can be regarded as a global equation for 
@, applicable all along the bone, with A and B known 
functions of s. To complete these equations it is 
necessary to determine the matrices A’ and C (and 
therefore the matrix A) as a function of distance along 
the bone. 

THE LOCAL COORDINATE SYSTEM AND THE 

CROSS-SECTION PROPERTIES 

The local coordinate system is chosen with the z’ 
axis along the centroidal axis of the bone and the x’ 
and y’ axes along the principle axes in a cross-section 
normal to the centroidal axis. To determine this 
coordinate system and the principal moments of 
inertia, the area, and the other cross-sectional proper- 
ties in the (x’, y’) plane, the bone is placed in a mold in 
such a way that it is generally aligned with the fixed z- 
axis, as shown in Fig. 4, and the mold is filled with a 

Fig. 4. The bone in a clear plastic mold, defining the fixed 
coordinate system (x. y, z). 

clear resin mixed with hardener. After the mixture 
hardens, numerous slices are taken perpendicular to 
the z-axis, and for each slice the cross-section of the 
bone, together with the fixed x and y axes, are 
photographed and enlarged, as shown in Fig. 5. The 
cross-sectional shapes are transferred to the computer 
using a digitizer and we compute, for each location z at 
which a cut is made, the coordinates (x,(z), y,(z)) of the 
centroidal axis, the area A, and the moments and 
product of inertia, I,,, I,,, IX,,, relative to the fixed x-y 
axes. The values of these quantities, determined for a 
discrete set of z, are fitted to a sum of Legendre 
Polynomials using the method of least squares. 
(Legendre Polynomials are chosen because their or- 
thogonality property facilitates the use of the least 
squares method by generating a nearly diagonal ma- 
trix in the equation for the coefficients.) Therefore, 
each of these quantities may be regarded as a given 
analytic function of z. 

The unit vector in the direction of the centroidal 
axis, k’, is 

(15) 

The cross-section of the bone perpendicular to the 
centroidal axis is obtained by rotating the cross- 
section perpendicular to the fixed z-axis through an 
angle tI=cos- 1 (k-k’) about the axis i* =(k x k’)/lk 
x k’l, as shown in Fig. 6. The axes i* and j* =k’ x i* lie 
in the plane perpendicular to the centroidal axis, but 
they are not the principle axes. They do, however, 
provide reference axes, relative to which the principle 
axes can be defined. The axes i= i*, i= k x i* lie in the 
plane perpendicular to the z-axis. The moments and 
product of inertia relative to these axes are 

~22=(3*j)2(~X,-~,2A) 

+2(3.j)(~.i)(l,,-x,y,A) 

+(i*i)‘(Z,,-x:A) 

Ips=$*j)2(1,,-y~A) 

+ 24*i)(i. j)(Z,, - x,y, A) 

+~*i)2(1,,-x~A) 

Z~~=[~~i)(~~j)+~~j)(~~i)](Z,,--~~y,A) 

+$*j)(~*j)(Zx,-y~A)+~*i)~*i)(Zyy-x~A). 



Fig. 5. A cross-section of the fifth metatarsal, taken perpendicular to the fixed z-axis. 
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Fig. 6. The cross-sections perpendicular to the fixed z-axis 
and perpendicular to the centroidal axis z’(s) at the location S. 

The moments and products of inertia in the coordi- 
nate system defined by (i*,j*) in the plane perpendicu- 
lar to the centroidal axis are 

I x*x* = cos3tl Ip* 

1 x*yr = cos2 0 Ii,? 

1 ,*,,=c0s01jj. 

The area of the bone in the cross-section perpendicu- 
lar to the centroidal axis, A’, and the area in the cross- 
section perpendicular to the fixed z-axis, A, are related 
by A’= Acost?. 

Principle axes are obtained by rotating the (x*, y*) 
axes through an angle 

1 
+*=?tan-’ 

21 x* y* 

1 -I 
(16) 

Y'Y' x*x* 

For any cross-section, there are four possible ways to 
choose the principle axes, and this definition always 
selects them so that the x’ axis lies in the quadrant 
- n/4 < &* <n/4; therefore it does not provide a con- 
tinuously varying local coordinate system along the 
length of the bone. If we arbitrarily select the x’ axis so 
that I,.,. -=z I,.,., then for any shape there are only two 
possible choices for the angle through which the 
(x*,y*) coordinates may be rotated. These are den- 
oted by I#J,, and $,, = 4, + x and are determined by the 
following scheme. 

If I X*Y* > 0 and I,,,, > lX*X* 

then $,,=$*, $,=$*+a. 

If IX.Y. > 0 and I,.+* < I,.,. 

then 4p= $J* + ~12, (b. = $* + 3~12. 

If IXeY, < 0 and IY,y. G I,,,, 

then 4p = $* + x/2, 4. = 4* + 3x12. 

If I,.,, < 0 and I,.,, > I,,,, 

then 4p=4*+~. &=4*+2~. 

For the first cross-section we rotate the (x*, y*) axes 

through the angle 4 =$p, and for each subsequent 
location we make the choice for 4 between 4p and 4, 
that gives the smaller difference from the value at the 
previous location. This provides a continuously vary- 
ing local coordinate system provided the cross-section 
does not assume a circular shape at any location. This 
scheme breaks down if 4 changes from a small positive 
value E at s to a small negative value -6 at (s+As). 
The choices presented by the above scheme for 4 at (s 
+As) are then $~,=$~*+n=rr-S and $~“=&*+2n 
= 27-1- 6, and the incorrect value 7~ - 6 will be selected. 
This can be corrected by introducing an additional 
requirement that if the change in 4 is not sufficiently 
small then we make the choice for 4 between $p and 4, 
that gives the larger difference from the value at the 
previous location. In practice, if the value for 4 is 
printed out for each location z, then it can be verified 
that the local coordinate system does in fact vary 
continuously along the length of the bone. 

The principle moments of inertia are given by 

I,.,. = I,*,.cos2 4 

+ I,,,,sin” 4 - I,.,,sin 24. (17) 

I,., = I,,,.sin2 $ 

+ Igr).,cos2 4 + I,,,.sin2& 

and the unit vectors in the direction of the principle 
axes are 

i’=cos4i+sin+j* (18) 

j'=k' x i'. (19) 

Clearly, at each location z the principle axes (and 
therefore the matFix C) and the area and principle 
moments of inertia appearing in matrix A’ can be 
found through routine computation. (The shape fac- 
tors and shear center locations in the matrix A’ can be 
found in a similar manner. However, in the problems 
to be treated in this paper, we assumed for simplicity 
that xl = y: = 0, that the shape factors k,. , k,. are equal 
to unity, and that K’ = I, = I,,,. + I,.,. .) The matrix A 
in equation (14) is therefore a known function of z. The 
right-hand side must be considered separately for each 
application, since it depends on the nature of the 
distributed load. This will be discussed further in the 
next section. 

APPLICATION TO THE FIFTH METATARSAL 

The six equations for the force and moment 
decouple from the six equations for the deflection and 
twist, as can be seen from the form of A’. Therefore, for 
certain bones, such as the metatarsals where the forces 
and moments are known at the metatarsal head, a 
straightforward Runge-Kutta technique beginning at 
one end can be used for the first six equations. 
Beginning again at the other end, where boundary 
conditions for the deflection and twist are specified, 
and with the forces and moments now known, a 



196 E. P. SALATHE, JR, G. A. ARANGIO and E. P. SALATHE 

Runge-Kutta technique can then be applied to the 
second set of six equations. However, in general the 
force and moment cannot be determined indepen- 
dently of the deflection and twist because of the 
boundary conditions; application of beam theory to 
long bones generally leads to statically indeterminate 
problems, as pointed out in the introduction. At each 
end complex relationships between deflection, twist, 
force and moment exist, and we are led to a two point 
boundary value problem for the full set of 12 coupled 
equations. This is the case for the fifth metatarsal, 
which is of special interest since it is subject to the 
Jones’ fracture (Arangio, 1983). Because of its orien- 
tation, a distributed load exists along the fifth meta- 
tarsal, transmitted from the ground up through the 
tissue that lies between it and the bone, as illustrated in 
Fig. 7. Since this distributed load is affected by the 

upward deflection of the metatarsal, it cannot be 
represented by the vector B’ in equation (8); it contri- 
butes elements to the upper right quadrant of the 
matrix A’. Equation (14) therefore remains coupled 
and the analysis of the fifth metatarsal presents a two- 
point boundary value problem for the 12 unknowns. 

We assume that an upward force of magnitude FA is 
applied in the fixed y direction at the metatarsal head, 
z=L, and that the metatarsal is rigidly fixed at its 
base, z =O. A relationship between the moment and 
the twist at z=O would be more appropriate. How- 
ever, not only does the metatarsalcuneiform joint 
deform, but so do all the joints of the midfoot under 
the action of applied loads. Therefore, until the present 
analysis is incorporated into the overall study of the 
deformation of the foot (Salathe et al., 1986), it is 
reasonable to regard the metatarsal as rigidly attached 
at its base. The distributed load is due to a com- 
pressible elastic medium occupying the region below 
the bone and above the level y=H, which represents 
the ground, as shown in Fig. 7. Moving this level up an 
amount A (equivalent to moving the foot down) 
compresses the medium and causes a distributed load 
along the metatarsal. Clearly, the magnitude of this 
distributed load is 

F =kA-%(4 
C 

Y&)-f-f 
(20) 

Y 

f 

In 

.? 

Fig. 7. The fifth metatarsal is subjected to a distributed load, 
transmitted by the ground located at y = H. 

where the denominator gives the undeformed height 
of the material that is compressed and the numerator 
gives the extent of the compression. The constant k is a 
material constant and yB(z) is the y-component of the 
bottom of the bone in the cross-section at z. Since the 
distributed load must lie in the vertical plane contain- 
ing the centroidal axis of the bone between s and 
(s+As) and act perpendicular to the bone, it has 
the direction k’x(j x k’). It can be shown that 
j*[k’x(jxk’)]=l-(j*k’)>O, and so this is in the 
upward direction, as required. We assume that there is 

no applied moment associated with the distributed 
load, so that Q, = 0. 

We can avoid a two-point boundary value problem 
for the fifth metatarsal by noting that since the bone is 
stiff a good first approximation to the distributed load 
can be obtained by neglecting the deflection, @s(z), in 
equation (20). The distributed load is then known and 
can be represented by the vector B; the form of 
equation (14) is unchanged. Therefore, as noted above, 
the first six equations can be solved with a 
Runge-Kutta technique beginning at the metatarsal 
head, and the second set can subsequently be solved in 
a similar way starting at the metatarsal base. With the 
deflections determined, a better approximation to the 
magnitude of the distributed load is found from 
equation (20), B in equation (14) is appropriately 
modified, and the above procedure is repeated until 
convergence occurs. 

The equations derived for the rotation T include the 
effect of both bending moment and shear force. The 
contribution of the distributed load to the shear force 
appears explicitly in equations (4) and (5). For beams 
of constant cross-sectional shape, the concentrated 
loads are accounted for by specifying appropriate 
initial conditions on T at z = 0. In the present case this 
would involve specifying @iO = -F,/AG at z=O. Be- 
cause of the form of the equations, this would alter @i,, 
by the constant amount - F,/AG along the bone. In 
the present theory we allow A to be a slowly varying 
function of z, and so we cannot account for the 
concentrated load through an initial condition. How- 
ever, to the order of approximation introduced, we can 
account for F, simply by altering @i,, by the variable 
amount -F,/A(z)G. Since this alteration in T has a 
complex effect on D, we use instead the following 
slightly modified scheme. At each step along the 
Runge-Kutta procedure, we alter @iO by an amount 
corresponding to the value of -F,/A(z)G at that 
location z. The next step forward then yields a value 
for the displacement corresponding to the correct 
amount of rotation. 

The cross-section in Fig. 5 is one of 32 obtained for 
the fifth metatarsal and Fig. 8 shows a reconstruction 
of the bone from these cross-sections. The values of 

X,, Y,, I,,-YEA, I,,--XX,2A, I,,-X,Y~A, A and Y, 
were determined for each cross-section and are shown 
in Figs 9-15 at the values of z to which they corre- 
spond. The bone extends over the range 
O,<z< 5.004 cm. The smooth curve in each figure is 
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Fig. 8. A computer reconstruction of the fifth metatarsal from the data obtained at each cross-section. In 
this figure the base of the metatarsal (a = 0) is at the right. 
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Fig. 9. The x-component of the centroidal axis, x,(z). The 
discrete points were determined for each cross-section, and 
the continuous curve is a least-squares fit to a series of four 

Legendre polynomials. 

+ 
0.2575 

Fig. 10. The y-component of the centroidal axis. y,(z). The 
discrete points were determined for each cross-section, and 
the continuous curve is a least-squares fit to a series of six 

Legendre polynomials. 

the result of a least-squares fit by a series of Legendre 

Polynomials. The number of such polynomials used to 
obtain the best fit for each variable is indicated in the 
figure caption. A separate program was written for the 
curve fitting, and the coefficients of the Legendre 
Polynomial expansion that give the curves shown in 
Figs 9-14 and the calculated bone length were used as 
input into the main program. 

Other data needed for the numerical examples are 
Young’s modulus for bone, E= 1.8 x lo6 Ncme2, the 
shear modulus G = E/3, the magnitude of the applied 
load F,, and the constants that determine the magni- 

-0.005 I I I I I I 
0 I 2 3 4 5 

2 (cm) 

Fig. 11. The moment of inertia about an axis through the 
centroid parallel to the x-axis: I,,-y:A. The discrete points 
were determined from each cross-section, and the continuous 
curve is a least-squares fit to a series of five Legendre 

polynomials. 

-0.005 I 
I km) 

Fig. 12. The moment of inertia about an axis through the 
centroid parallel to the y-axis: I,, -xf A. The discrete points 
were determined for each cross-section, and the continuous 
curve is a least-squares fit to a series of six Legendre 

polynomials. 
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Fig. 13. The product of inertia relative to axes through the 
centroid parallel to the x-y axes: I,-x,y,A. The discrete 
points were determined for each cross-section, and the 
continuous curve is a least-squares fit to a series of eight 

Legendre polynomials. 

O.So~ 
2 3 4 5 

z km) 

Fig. 14. The area A of the cross-section perpendicular to the 
fixed x-axis. The discrete points were determined for each 
cross-section, and the continuous curve is a least-squares fit 

to a series of six Legendre polynomials. 

tude of the distributed load. We estimate these con- 
stants in the following way. By neglecting @s(z) and 
specifying an estimated value, F,,,, for the magnitude 
of the total distributed load along the length of the 
bone, it follows that 

We selected values for H, FTOT, and A, and calculated 
k from the above expression. These three quantities 
therefore uniquely specify the distributed load. 
Figures 1619 show the three components of the 
force, moment, deflection and twist corresponding 
to FA =75 N, H=0.5 cm and A =0.3 cm. With 
F TOT = 75 N, we determine k = 35.8 N cm- ‘. Because 
of the upward deflection of the bone, this data 

o.61[ 
0 2 3 4 5 

2 (cm) 

Fig. 15. The height of the bottom of the bone in any cross- 
section from the fixed x-z plane. The discrete points were 
determined for each cross-section, and the continuous curve 
is a least-squares fit to a series of seven Legendre polynomials. 
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Fig. 16. The three components of the force along the length 
of the metatarsal. 

corresponds to an actual total distributed load of 
70.5 N along the length of the bone. Values of 
A =0.35 cm and 0.25 cm give results that are very 
close to those shown in Figs 1619. The choice 
A=O.25 corresponds to a stiffer material with 
k=43 N cm- ’ and the choice A=O.35 corresponds 
to a more compliant material with k = 30.7 N cm - ‘. In 
the first case the actual total distributed load is 69.6 N, 



An application of beam theory to determine stress and deformation 199 

640 

r 

I km) 

Fig. 17. The three components of the moment along the 
length of the metatarsal. 

0.048 I- 

0.04c )- 

0.03; 

r 
z 

.g 0.02r 
+J 
P 

E 
0 0.016 

o.oot 3 

I 
C 3 

z (cm) 

Fig. 18. The three components of the deflection along the 
length of the metatarsal. 

and in the latter it is 71.1 N. Clearly, the solutions are 
not particularly sensitive to these parameters. 

The theory presented here can be applied to a wide 
variety of statically indeterminant problems involving 
long bones to determine the force, moment, deflection 
and twist along the length of the bone. The distribu- 
tion of stress throughout a cross-section can then be 
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-0.006 I 
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-o.020_I 
0 2 3 4 5 
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Fig. 19. The three components of the twist along the length 
of the metatarsal. 

found using standard techniques. We have shown how 
the data required for the theory can be obtained 
through cross-sectioning of the bone and have carried 
out the procedure for the fifth metatarsal. Similar data 
can readily be obtained for any long bone of interest 
and an appropriate system of differential equations 
formulated and analyzed to determine the deforma- 
tion and load in that bone. 
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