next up previous contents index
Next: 7.14 Gridding of data Up: 7. Cook-book Previous: 7.12 Optimal triangulation of   Contents   Index


7.13 Plotting of vector fields

In many areas, such as fluid dynamics and elasticity, it is desirable to plot vector fields of various kinds. GMT provides a way to illustrate 2-component vector fields using the grdvector utility. The two components of the field (Cartesian or polar components) are stored in separate grdfiles. In this example we use grdmath to generate a surface $z(x, y) = x \cdot \exp(-x^2 -y^2)$ and to calculate $\nabla z$ by returning the x- and y-derivatives separately. We superpose the gradient vector field and the surface z and also plot the components of the gradient in separate windows:





#!/bin/csh
#        GMT EXAMPLE 13
#
#        $Id: job13.csh,v 1.4 2003/12/18 02:27:21 pwessel Exp $
#
# Purpose:    Illustrate vectors and contouring
# GMT progs:    grdmath, grdcontour, pstext
# Unix progs:    echo, rm
#
grdmath -R-2/2/-2/2 -I0.1 X Y R2 NEG EXP X MUL = z.grd
grdmath z.grd DDX = dzdx.grd
grdmath z.grd DDY = dzdy.grd
grdcontour dzdx.grd -JX3i -B1/1WSne -C0.1 -A0.5 -K -P -G2i/10 -S4 -T0.1i/0.03i \
   -U"Example 13 in Cookbook" >! example_13.ps
grdcontour dzdy.grd -J -B1/1WSne -C0.05 -A0.2 -O -K -G2i/10 -S4 -T0.1i/0.03i -X3.45i >> example_13.ps
grdcontour z.grd -J -B1/1WSne -C0.05 -A0.1 -O -K -G2i/10 -S4 -T0.1i/0.03i -X-3.45i -Y3.45i \
   >> example_13.ps
grdcontour z.grd -J -B1/1WSne -C0.05 -O -K -G2i/10 -S4 -X3.45i >> example_13.ps
grdvector dzdx.grd dzdy.grd -I0.2 -J -O -K -Q0.03i/0.1i/0.09in0.25i -G0 -S5i >> example_13.ps
echo "3.2 3.6 40 0 6 BC z(x,y) = x * exp(-x@+2@+-y@+2@+)" | pstext -R0/6/0/4.5 -Jx1i -O -X-3.45i \
   >> example_13.ps
\rm -f z.grd dzdx.grd dzdy.grd .gmt*





A pstext call to place a header finishes the plot (Figure 7.13.

Figure 7.13: Display of vector fields in GMT.
\begin{figure}\centering\epsfig{figure=eps/GMT_example_13.eps}\end{figure}


next up previous contents index
Next: 7.14 Gridding of data Up: 7. Cook-book Previous: 7.12 Optimal triangulation of   Contents   Index
Paul Wessel 2004-10-01